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CHAPTER IV - PART A

STRUCTURAL ANALYSIS OF HOMOGENEOUS AXISYMMETRIC

RADOME SHELLS UNDER MECHANICAL, THERMAL AND

INERTIAL LOADING

by Frank Lane
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A. STRUCTURAL ANALYSIS OF HOMOGENEOUS

AXISYMMETRIC RADOME SHELLS UNDER

MECHANICAL, THERMAL. AND INERTIAL LOADING

1. INTRODUCTION

Up to the present time shell analyses carried to the point of numerical

calculation have been restricted to membrane-type approximations, shallow-

shell type approximations, or to shell analyses limited to axisymmetrical

loadings. The present development combines the techniques of tensor analysis,

difterential geometry, and variational calculus with the capabilities of large-

scale digital computing machinery to permit solution of the shell problems.

encountered in radome applications without restriction on geometry or form of

loading distribution, and with complete consideration of both membrane and

flexural effects. The variational approach permits treatment of static and

dynamic or vibratory loadings by related methods and permits introduction of

thermal effects (both material property variation and initial stress

effects) without major complication.

The present report describes the formulation of the radorne problem for

homogeneous radome shell types with particular emphasis on ogive, cone, and

hemispherical shapes. The techniques developed are, however, equally

applicable to other shapes with completely general loading distributions and

subject to arbitrary temperature variations. Within the framework of the

tensor methods used, the internal displacements (and velocities in dynamic

problems) are expressed as first-order tensors, stresses and strains in terms

of second-order tensors, and stress-strain relations, in terms of fourth-order
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tensors, all in curvilinear coordinates appropriate to the radome shell middle

surface. All elastic, thermal, and in dynamic applications, inertial aspects

of the problem are formulated in general tensor notation as is the differeitial

geometry of the shell middle surface.

Actual numerical computations are rendered feasible by utilizing the

above-described intrinsic shell theory in: conjunction with an energy or

variational method. Final computation reduces to the solution of an algebraic

problem, non-homogeneous in the case of response to static, dynamic, or

thermal loading, and homogeneous in the case of free vibration. The entire

development, for certain conditions, proceeding from the.prescription of

initial shell geometry and loading to the final resulting deformation and stress

distribution is to be programmed for execution upon the IBM 704 digital

computer.

The present section describes the analytical phases of an investigation

whose ultimate objective is the development of an efficient and accurate

program for the structural analysis of thermally and mechanically loaded

axisymmetric, homogeneous radome shell structures by means of high-speed

digital computing equipment. The end-product sought is a program which

requires but a minimum of input data describing the shell geometry and the

imposed thermal and mechanical loading distributions and which utilizes this

data to generate solutions of the structural problem. The solutions are to

include adequately detailed descriptions of the distributions of deformation and

stress throughout the shell. Moreover, the program is to be sufficiently
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general to permit inclusion of varying degrees of edge fixity as well as the

presence or absence of an elastic central boom.

The analysis is based on a general formulation of the axisymmetric shell

problem in curvilinear coordinates and takes advantage, from the very outset,

of the knowledge that the problem is to be solved numerically. This permits

an approach which relies upon a minimum of physical assumptions or

approximations. The only such assumptions introduced are the following:

(a) The shell-type assumption that the normal stress component in the direction

normal to the shell middle surface may be neglected relative to the other

induced stresses; (b) The shell-type assumption that normals to the middle

surface remain straight under deformation; (c) The calculation of the slopes

of the above normals under the assumption that normals to the middle surface

remain normal under deformation; (d) The assumption that Young's modulus

E and Poisson's v may be considered constant throughout the shell and equal

to their respective mean values over the temperature range experienced by the

shell for any given problem. This last assumption may be dropped when

axisymmetrical loading is considered, but results in an essential simplification

for asymmetric conditions.

The fact that it is recognized in advance that numerical methods are to be

used makes it unnecessary to use any of*the standard shell approximations of

expanding in powers of the normal coordinate, and neglecting various terms as

small. Incidentally, it is this type of approximation which accounts for the

major portion of the discrepancies noted between the linear shell theories of
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various investigators

In view of the current interest in the unified antenna-radome concept,

the analysis presented herein is made sufficiently general to encompass the

case of the truncated axisymmetric radome with central boom. The formula-

tion, however, is completely general and, aside from certain problems which

arise at the apex of a complete shell. suffers from no essential complications

when applied to general shells of revolution with or without a central boom.

The technique eniployed herein hinges on the energy approach to

structural analysis and requires first an extension of the energy principle

to permit inclusion of thermal effects. For this purpose the so-called

"free energy" of Hemp I is utilized and is specialized from the general thermo-

elastic three-dimensional form given by Hemp to the form appropriate to shell

analysis. The use of the energy technique together with a general tensorial

formulation of the energy expression in curvilinear coordinates appropriate

to the shell middle surface virtually eliminates all possibility of error due to

neglect of terms or inaccurate or incomplete resolution of forces required by

equilibrium methods, Correspondingly, the racroscopic stresses or stress-

resultants of the usual shell theory are by-passed, the entire problem being

formulated in terms of displacements. Furthermore, the difference approxi-

mation required by the numerical solution technique is viewed as a direct

method in the calculus of variations: The difference approximation is

introduced directly into the energy integral (thereby converting this integral to

a summation) and the equilibrium problem reduces to a minimum problem with
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respect to the mesh-point values of the displacements. This technique has

several advantages: First, it insures that the numerical problem, in

difference form, has a positive-definite matrix, thereby guaranteeing the

convergence of iterative solution techniques. Second, it makes the introduction

of quite general boundary conditions extremely simple and rjearly automatic,

and finally, it eliminates any necessity of performing the operation of first-

variation to obtain the Euler equations and boundary conditions of the

variational problem, followed by differencing of these equatiOns. Rather, the

differencing in the energy expression proper provides the matrix of the

numerical problem directly and automatically insures the appropriate

expression of boundary conditions in difference form whether these Correspond

t'o fixed, *partially fixed, or free-edge situations.
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2. GEOMETRY AND COORDINATE DEFINITION

Figure 1 shows, for the general shell of revolution, the yi coordinate

system utilized together with the associated covariant metric tensor (aij)

components. The metric tensor elements are expressible completely in

terms of meridian slope, P, and the two principal radii of curvature R, and

R,. The orthogonality of the coordinates insures the diagonal nature of the

metric tensor and the simple relations for the contravariant form ai j . The

quantity J, which is equal to the square root of the determinant of aij, gives

the volume element for the yi coordinate system and will be needed for

formulation of the energy integrals. The coordinate y3 gives the inward

distance locally normal to the shell middle surface, yZ gives meridional

distance along the middle surface from the apex of the middle surface

(extended, if the actual shell is truncated), and yl is the longitude angle in

radians.

Figure 2 illustrates the same data specialized to the case of the trun-

cated cone. In this case the variable radii of curvature R1 and R? are re-

placed, respectively, by y2 tan k and a) , while the generally variable

meridian-tangent angle, P, becomes simply the constant semi-vertex

angle k . The metric elements simplify correspondingly.

The contravariant form of the displacement vector corresponding to

the yi coordinate system is denoted by i and is to be distinguished from

the physical displacement vector (ul u2 u3 ). The reason for introducing

both tensorial and physical components of the displacement vector is that
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the strain-displacement relations are natural in the tensor form, whereas

the shell-assumption of u3 independent of y3 while ul and uz vary linearly

with y3 is expressed in terms of physical displacements. The entire

problem will be cast ultimately in terms of physical displacements.

The relation between physical and tensorial displacements is well-

known:

ui = -iaii = i a* (I)

not summed on i

It is to be noted that, in view of the orthogonality of the coordinate

system, there is no need to distinguish between cantravariant and covariant

forms of the physical displacements u i .
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3. STRESS-STRAIN AND STRAIN-DISPLACEMENT RELATIONS

The covariant form of the strain-displacement law for any coordinate

system, within linear theory, is given simply as 3

1lij " ( i,J j j, i )

wherein commas denote covariant derivatives and the ti are merely the

covariant 'components of the displacement tensor. The riij are the

covariant, linear strain components.

The stress-strain law for an isotropic material in general curvilinear

coordinates, including thermal stress effects, is given by

.ij = (a ik ail + IV aiJ a kl) 'E (T - To) a i j  (3)
- + V _2 ) kl - 1-2V1+ v 1-Zv. l2

wherein Tj is the contravariant form of the stress tensor, c is Young's

Modulus, v is Poisson's Ratio, a is the linear coefficient of thermal

expansion anl (T-To) is temperature relative to the temperature T o

associated with the unstressed state. Repeated indices imply summation

throughout unless otherwise specified.
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4. SHELL ASSUMPTIONS

At this point, 'the shell assumptions are introduced. These may be

summarized as follows:

33
(a) T - 0 (4)

i. e., the normal stress (nornal to the middle surface) is small of higher

order relative to other stress components.

(b) u= U W(y, y') + y3 Uhj) (y -y')

u UZ (y', y1) + y3 Ui) (y, y) (S)

u3 3 (71 y2)
SU(o)

i.e., the in-plane displacements are assumed linear in y 3 while u 3 is

assumed independent of y 3

Finally

(c) the u~j) u 2 ) are to be computed on the assumption that normals

to the middle-surface remain normal at the middle surface.

This process is clearly discussed by Novozhilov 4 . It is to be

emphasized that the foregoing three assumptions, (a) (b) (c), together with

the use of constant mean values of c and v, are the only ones introduced

into the analysis until the difference method is introduced to permit numeri-

cal solution. No intermediate approximations, such as the common expansior

of contravariant metric elements in powers of y3, are utilized.
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The assumption (4) of vanishing T 33 is utilized to eliminate 133 from

the stress-strain relation (3) . Hereafter, Latin indices i,j, k, ... will

range over 1, 2, 3, while Greek indices a,P,y, 6 ... will range over only

the middle-surface indices 1, 2. The elimination of r133 from the general

stress-strain law (3) gives the following shell stress-strain relations for

the stress components parallel to the middle surface:

ap _ € (aa 6ay+ V aa~aY6 ) _ ea a a (T-T O ) (6)
+ V1 - VN6 I-v

This is the stress-strain law, including thermal effects, which governs the

general shell-of- revolution problem.

Next is invoked the assumption (c) of normals at the middle surface

remaining normal for purposes of computing the This is equivalent

to assuming that

7a3 0
for purposes of computing the u(.

The consequences of this condition are as follows:

0 Q31  3= -(a 3 + 3, a) 1y3 = 0 (7)

ly 0  y3:

Expanding the indicated covariant differentiation, this becomes:

0 =0

8)8)

CIyta a3 k

y 3 
- 0
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where the bracketed expressions are the Christoffel symbols of the second

kind based on aij and where the well-known symmetry of these symbols in

the lower indices has been utilized. It is easily ascertained for the present

metric that all Christoffel symbols with more than one index equal to 3

must vanish. Hence,

0 - - - -3

Utilizing relations ill and the fact that &i I a 41 t, thi4 may be expressed

in terms of the physical displac mets

nO 84faI01 0

SO sum n a

Now the rltOm between Christaffel symbols of the first and second kinds

i F given by

H e a t a a o 1 0 a

due to the vanishing of Christaffel symbols with more•tsan one index equal

to 3. Invoking oncp again the diagonal tiaacter of aij. azd the defining

relations 3 for the Christoifel symbols of the first kind;

iij, k =- 1 = _I + Bajk - a (13)

SyyJ "y ay (13
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the relation (10) may be put into its final form:
B - a a 1a a8aaaa Bu 3

8 u u aa a By (14)

(I) VJ3 =o0
no sum on a

a= 1, Z

This pair of equations serves to eliminate irom all further considerations

the quantities u(a in favor of the middle-surface deflections u a  and• • (o)

gradients of U3  . With this relation, the direct consequences of the

shell-assumptions are concluded.
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5. EXPRESSION OF STRAINS IN TERMS OF PHYSICAL DISPLACEMENTS

Equations (1) and (2), together with the well-known properties of the

Christoffel symbols, permit the expression of the strains ta in terms of

physical displacements ui . These take the following form, for the case of

the metric tensor corresponding to Figure 1:

ByZ 1 3 yZ 2 8y 3

812 u3 8a.,

'1 ;- - - I+ auz
1 2 2 ayz  4 a 2 ay1

These strain expressions may then be given in terms of middle-surface
1

values u(,) of displacements by simply substituting from (5) and (14) into

the general displacements ui of (15). The substitution, while routine, is

somewhat lengthy and need not be reproduced at this point.
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6. ENERGY FORMULATION

The energy formulation sought for the shell problem under both thermal

and mechanical loading may be developed by extending to general curvilinear

coordinates the "free energy" considered by Hemp in Reference (1). Hemp

proposes a thermodynamic explanation of this quantity, but it suffices to

consider the free energy as simply equal to the variational integral whose

Euler's equations provide the proper equilibrium equations of thermo-

elasticity as well as the proper boundary conditions. In this sense, the

free energy serves as the thermoelastic analog of the strain energy in

ordinary isothermal elasticity, and this is the context in which it will be

utilized in the present analysis.

Hemp's free energy, extended to general curvilinear coordinates y

takes the form:

1 2I3k i V ij kli
( r Jd d d (ai a + a ak((gene raljl Y y1 2(1+v) I-2V j"kI

ik (1 6)

ca (T - To) a ik
l-2V i

Under the shell assumptions (a), (b), (c) of the present analysis, the

express-ion for F may be re-derived with the following result:

1__3f___Y a3 Y6
FFfJd, d~ d {LE (a" 6 a + -a a 1 7

shell IY Y /cib-V -Y6

(17)
a. (T -To) a a " 7(

1 - 56
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This relation in conjunction with a work integral W forms the basis for

the shell analysis developed herein. The work integral for the shell, assum-

ing the mechanical loading to be due to a normal pressure distribution,

p(yl, yZ), is given by

= dy'dy J(y,9 y,o) p (W y2 ) u3 (y1 y,) (18)

where p is considered positive when directed inward; i. e. , p is actually

the local value of (outer pressure minus inner pressure).

The combined problem of mechanical and thermal loading of a shell is

then stated in variational form: The solution distribution of deflections ui

is such that IF-W) is stationary, i.e.,

6 (r - W) a 0 (19)

However, the fact that litear theory is used throughout implies that super-

position of thermally and mechanically induced stresses is valid. Hence,

the thermal response ressiltaig from the temperature term in F and the

mehanical response iresultIng from W may be calculated separately and

added. Care must be taken. however; to insure that the proper mean values

a t md p ate used in the pressure problem if the pressure loading is to

occur under high temperature conditions.

59
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7. ELIMINATION OF y' -DEPENDENCE BY FOURIER ANALYSIS

The thermoelastic response problem defined by relations (17), (18),

and (19) is of three-dimensional character in its present form. The purpose

of the present section is to reduce the problem to a series of two-dimensional

problems in which the yl -dependence is lacking. The following section will

describe the technique for reducing each of these two-dimensional problems

in turn to a one-dimensional problem by integration through the shell thick-

ness with consequent elimination of y3 -dependence.

The reduction to two dimensions is straightforward and is accomplished

by Fourier resolution of mechanical and thermal loading distributions as well

as of the corresponding response deformation distributions. Thus, the

independent variable yl is, for reasons of clarity, denoted by 0 and the

pressure load p(yly z ) is expressed as a cosine series in 0:

p(yl, y, ) = p(yZ, 9) = M p(yZ ) cos mO (20)

The use of a cosine series is but a minor restriction since the origin of a

may be chosen at will, and the radome loads to be expected will generally

exhibit symmetry about some meridian plane.

Similarly, the temperature loading may be expanded in a cosine series

with respect to I where, due to the validity of superposition, the origin for

this 0 need not correspond to that of the 0 used in the pressure expansion,

provided the responses are obtained separately and superimposed correctly.

Thus,

a(T-T°) mT(yzy3) cos mO (1)
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where the coefficient of expansion, a, which is in general temperature-

dep,-ndent, is included with (T-To) to simplify the analysis. Corresponding

to loading expansions (20) and (21), not necessarily considered simultaneously,

the displacements ui are resolved into Fourier components as follows:

u (0)  U m u 3 cos mO

m=O

u(o) m u 2 cos mO (22)

m-00m=O

U = ul sin mg
(o) m

m=

where mu i =mu(y Z)

Now, from equations (5) and (14), together with the fact that all

geometric properties are 0-independent, it follows that u l depends
(1)

linearly upon uo and - , both of which are given by sine series.

Similarly, 2 is linear in uo and 8u3 both of which are given by

cosine series. Hence u3 and u z are expressed as cosine series in 0 while

ul is a sine series, which state of affairs corresponds to the even charac-

ter of the loading (thermal or mechanical) in 0.

An examination of strain expressions (15) in the light of the above

remark reveals that Tj and T1,2 must be pure cosine series while T11,

must be a pure sine series.
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Now, from the diagonal character of the metric tensor aij (hence, also

of a1 3 which is merely the inverse of aij), it may be easily seen that the free

energy expression (17) involves quadratic forms in the strains of only the

following types:

and that, moreover, these expressions are multiplied only by quantities

independent of yl (or 0). Furthermore, the thermal loading term in F

involves only products of cL(T-To) and 111 or jzz together with 0-independent

quantities (recalling the assumption of a constant mean value for C and v).

Finally, the work integral W involves only products of pressure and u 3 ,

together-with 0-independent factors. The result of all this is a complete

decoupling of distinct harmonics; i.e., associated with the mth harmonic

of the loading (thermal or mechanical) there correspond only the mth

1 2 3harmonics of u1 uz u3 and of ulo ) u(o} and U(o) and of the strains and

stresses. This is a simple consequence of the fact that F and W involve

integration with respect to 0 over the interval (0, Z) and the fact that the

sines and cosines form an orthogonal set with respect to a constant weighting

function over the interval (0, 2r). It follows from the relations

f sin2 mg dO = cosz mO dQ iT m /0

(Z3)

f 
2 cosz mg d9 = Z m = 0

4 51
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that the free-energy form ma,.: be reduced to a system of two-dimensional

problems independent of yl or 0 by introducing the simple notation:

F(m) = 21r Cmj dyz dy 3 ( ......... ) (24)

Likewise, the work form W reduces to a set of one-dimensional integrals;

W 2ir C ~dy Z( (25)(n) M  d .......... )

with Cm = : m = 0

M >0 (26)

wherein the mth integrand involves only the mth harmonic of pressure,

temperature, and strain.

The problem corresponding to (19) for the mth harmonic is then

simply:

6 (F -W ) =0 (27)

The problem, originally three-dimensional, is thus effectively

reduced to a set of decoupled two-dimensional problems. In practice, it

will suffice to consider orly zeroth and first-order harmonics (m =0, 1)

unless the loading exhibits unusually severe 0-dependence associated with

some sort of load or temperature concentration.
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8. REDUCTION TO ONE-DIMENSIONAL PROBLEM BY INTEGRATION

THROUGH SHELL THICKNESS

The work forms W(m) of expression (Z5) are already one-dimensional,

and it remains to put the free-energy harmonics F(m) of expression (24)

into similar form. This is accomplished simply by integrating with respect

toy 3 through the shell thickness from -h/2 to +h/2. The integration oper-

ation involves no essential difficulty for the portions of F(m ) quadratic in

the strains, since all y 3 -dependence is completely defined. The tempera-

ture contribution to F(m) is treated simply by defining several required

weighted integrals of a(T-To) through the shell thickness. In view of the

fact that the distribution of a(T-T o) is input data for the thermal stress

problem, any such weighted integrals will be known as required. It should

be noted again that no approximations or expansions in powers of y 3 are

necessary at this stage of the reduction in view of the fact that the problem

is eventually to be solved numerically. The presence of variable coefficients

of logarithmic character, for example, causes no difficulty in the numerical

solution.

The type of result which is to be expected from this operation may

be indicated as follows: Equation (14) gives u(,) as a linear 4combination

a 8u 3

of u(o) and -=!) involving no y3 -dependence. Thus, making use of the
ay a

Fourier resolution of the preceding section:

ua  + 3 u a(y)

mu m (o) y y m (yZ)

(28)
rnu 3 =m uo) (yZ)
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Now, from the free-energy expression (17) and its two-dimensional

Fourier resolution (24), it can be seen that the only y3 -dependence in

F (m enters through terms of the following types:

J (all ri1) J (a z2  "1ZZ )2 J (all rill a- 2 )l

J all a2z  (l2)" (29)

a(T-To) Ja T1 1 l and a(T-To) J aZZ ?12

Furthermore, examination of strain expressions (15) shows that

all = + Sa-ZZ uZ  a(H + u 3  all
y yz BY 3

T 22 =%12w Lau + u3  )1Y (30)

]ali a"z Ty, I z a,2 y u ayy /
4 a 1 1 a 2 '11 %/a12 a ayj

Moreover, J is given simply by Nrall azz

Therefore the terms (29) which are quadratic in the strains are all of

the form

4multiplied by polynomials in y 3

(31)

Nof up to 4th order

N'alI a 2

The temperature terms of (29) involve only the temperature, or a(T-To)

multiplied by polynomials in y3 of second order or lower.
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Now terms of the types occurring in (31) are all easily integrated

with respect to y 3 , resulting in nothing more formidable than logarithms

whose arguments may depend upon yZ. The temperature terms may be

handled completely by defining the following three weighted averages of

the general mth harmonic of a(T-T o ) (recalling expression (21) ).

h i h T W (Yz)

These weighted averages are all known in terms of prescribed data

for the thermal stress problem. Thus the problem (27) for the mth

harmonic pf the displacement distribution and, correspondingly, of the

stress distribution, is reduced to a one-dimensional problem with yz

the middle-surface arclength along the meridian, Aerving in the role of

independent variable. As a final parenthetical remark, it may be noted

that the logarithmic terms resulting from the y3 -integration will all be

.of the form

_h/Z
"R a

Ln h/Z (33)

a I or 2

and hence are well-behaved as long as the local semi-thickness hs

smaller than the smaller of the two local principal radii of 2
curvature, R ,R Z
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9. BOUNDARY CONDITIONS

Only one set of conditions remains in order to complete the problem

statement, and this is the prescription of boundary conditions at the for-

ward and after edges of the radome shell. Within the framework of the

energy method it is possible to prescribe in a routine manner very'general

boundary.conditions including the presence, if necessary, of an elastic

central boom.

Considering first the base of the radome (y =J) the shell is assumed

simply supported but with a distributed moment spring of spring constant

k3 inch-pounds per radian per inch of circumference (see Figure 3(a) ).

The presence of the spring k3 corresponds to partial fixity and may be

varied from zero, corresponding to simple support, to infinity (see the

end of the present section) corresponding to the fully-clamped condition.

The base boundary conditions are thus specified as follows:

at ya =I : m u l = mul = mu3 = 0 (34)

And, to the free-energy component Fm add the base-spring energy:

R1 (os) -f 2 mICS ) cos'(y' m)
m 

mU

(35)
Ic 3  c;iyz =

Cm 2 R Cos 
M3
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Conditions (34) are specified in the conventional manner, whereas the

edge moment condition, instead of requiring the usual development of an

expression for macroscopic or resultant moment in terms of displacements,

appears in the form of a simple addition to the free energy. These

conditions complete the base boundary specification.

The nose boundary conditions are inserted in a manner similar to

that illustrated by expressions (351, there being in general no nose con-

straint equivalent to the fixed conditions (34). Figures 3(b), (c), (d), and

(e) illustrate the equivalent springs for the nose boundary conditions.

Figure 3(b), with associated spring k1 , represents the resistance of a

central boom (and nose attachment to the boom) against axial stretching.

The mean axial displacement at the middle surface for the nose is

given by

(u z cosp + u3 sing) dy =

(36)

0 11cos+ ou3 sinP

l.y 3 =0

yZ=al

Thus the energy addition appropriate to axial displacement of the

nose is: Add nothing to Fm for fn > 0, and to F. add,

k, ( ° u z cosP + Ou3 sin) (37)
ly3 =0

y a al
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If there is no axial restraint from a central boom, k1 =0, while nonzero

k, -values give various degrees of axial stiffness. Similarly, the mean

value of nose transverse displacement, which is resisted by elastic bend-

ing of the central boom, if such a boom is present, is given by

(uz sinp - u 3 cosp) cos yl - ul sin y dyl

0o 
y3 0

2
y =at

T (uzsinp - u cos -u (38)

3
)" 0

2
y -al

And the corresponding energy addition is (see Figure 3(c) ) zero for

m / I and

.(+ u" sino - 1u3 cosji - u)] for m.=1 (3 )

Y= 0

y a1

where k? is the spring constant for the boom in transverse deflection. If

the boom is absent, kZ = 0, while nonzero k? -values correspond to varying

degrees of boom flexural stiffness.

The central boom , if present, also resists a mean value of shell

transverse slope at the nose (Figure 3(d) ). This slope is given by
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- os a ( [1 u2 sinA - ju3 cosP - ) (40)

y3 0

y al

the computation of which is facilitated by the fact (Figure 1) that

82= -1 The energy adition corresponding to this is simply

k4 (a) for m I and zero for m/ 1 (41)
2

Again, in the absence of the boom, k 4 = 0.

Finally, Figure 3(e) represents the noseequivalent of the base-edge

clamping. The distributed spring k 5 provides the equivalent of the degree

of clamping of the nose edge to the boom or to any closing member even if

the boom is absent. For purposes of computing the contribution to F from

this equivalent spring distribution, it is necessary to have an expression

for the yl -component, zI , of physical rotation. This is given by the

following relation:

' + (42)

y3= 0 y=0

The contribution to F due to distributed nose spring k5 is given by the

integrated square of the difference between this local rotation and the

angle (-acosyl) corresponding to mean rotation of the nose structure.

R1 o s3 - - _ + + F cos y) dy] (43)

0 Y3= 0

= at
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This is easily integrated to give

op 2 C
R- co u2 ( + u w a (44)
cSj21Zm( 8 yZ RZz j?T~~~~y Ul olZ m--y

3y 0

where F is given by (40), and terms in (44) containing & contribute only

to F(,) whereas the series expression contributes to Fm for all m =0, ,,...

In the event that the nose edge is free or is simply supported at the

connection to a central boom, then k5 is simply set equal to zero, whereas

a fully-clamped nose condition is achieved by letting k5 become indefinitely

large.

The approach to infinity of any of the aforementioned springs ir

order to simulate fully fixed conditions may be handled witbin - numerical

difference scheme by scaling certain of the mesh-pcint values of displace-

ment or differences thereof in such a way that numerical data remains

bounded. This is numerically equivalent to inserting the constraints direct-

ly, as in equation (34) for the base edge displacement. If this approach is

considered undesirable due to other features of the numerical solution tech-

nique, then the fully fixed condition may be placed in the direct form of

equation (34). In other words, in place of letting k3 approach infinity and

including in the energy expression the contribution (35) with the ':onsequent

necessity for scaling, the condition of full fixity is equalLy well inserted

by setting
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8 mU3  -0 (45)

ayZ

and imposing the corresponding constraint on the numerical difference

problem.
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10. FINITE-DIFFERENCE SOLUTION TECHNIQUE

The complete shell analysis is now formulated as a series of uncoupled

variationa) problems of the form (27) in which the energy expressions F

and W(m) consist of one-dimensional integrals over the shell meridian

plus possible boundary-condition energy additions to F(rrjwhich are expressed

as quadratic combinations of edge displacements and derivatives thereof.

Starting from this point, a variety of solution techniques is available.

One might use the Rayleigh-Ritz method of expanding unknown deflections

in a series of known, fixed-boundary-condition satisfying funcions and

perform the variational operation directly by minimization with respect

to the displacement expansion coefficients.

The existence of edge effects which exhibit strong gradients in the

edge regions militates against this method as does the inaccuracy inherent

in utilizing the method to obtain stresses which involve derivatives of the

displacement expansion functions. Still another disadvantage of the

Rayleigh-Ritz technique lies in the tremendous number of integrations

which must be performed to gene-ate the matrix of the numerical problem.

Alternatively, one may perform the variational operation analytically to

obtain systems of three ordinary differential equations for each harmonic

(each value of m). These (Euler) equations may then be solved by finite

difference techniques.

T-here are several disadvantages associated with this technique. First,

the Euler equationr must be found analytically, as must the natural boundary
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conditions associated with free or spring-restrained edges. Then both the

equations and the boundary conditions must be placed in difference form,

an operation which leaves a great deal to personal judgement. Finally,

wh 3a thij ii complete, there is no assurance that the matrix of the system

of equations will be symmetric and positive definite, and these character-

4is -ics are helpful in guaranteeing the convergence of iterative solution

techniques . The large-scale character expected for the system of equa-

tions indicates that iterative technior.ea will be needed for refinement of

soluLions if riot for actual solution itse!lf.

The approach followed here is, in a sense, a combination of the above

I two techniquas. The continuous range (ai , 1) of yz is replaced by a dis-

tribution of diszrete points and the values of the displacement components

S3 ) mU(o) at thes., points are cznsidered as degrees of freedom for

the variational problem. The point spacing need not be uniform and, in

fact, in :rder to describe adequately the edge-effect or "boundary-layer"

effect, this spacing should be considerably smaller in the base and nose

edge regions, changing to a larger value for the major internal portion

of the range. The decisive point here, however, is the fact that the

diff rence approximation is introduced directly into the energy integrals

%which, in turn, become sums) and the boundary energies, thereby convertin

the total energy expression (F - W ) into the sum of a quadratic form
(in ) ( ) i

and a linear form in'the point values of the displacements mU(o) . This

serves to make the differencing more routine and less a matter of choice,

but more important, it guarantees the symmetry and positive definiteness
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of the matrix of the equation system, since the matrix arises from the

positive definite quadratic term in the free energy. Finite-difference

approximation of this term should not alter its positive definite character,

and will result in a symmetric system m.trix, The finite difference form

of the Euler equations or, what is equivalent, the equilibrium equations

is then given simply by ?quating to zero the derivative of the total energy

form with respect .o each of the degrees oi freedom. Thus the matrix of

the quadratic energy form (multiptlied by 2) becomes the matrix of the

difference e-laations, aad the vector whose inner product with the unknown

displacemenL gives the linear form in the totat energy, becomes the forcing

vector fcr the system. Hence the above-mentioned differ !ntiatizn with

respect to the point-values of the deflections need not be carried out,

since the results are known beforehand, and the matrix of the quadratic

energy form together with the vector of the linear form serves to describe

completely the system of nonhomogeneous linear equations which con-

stitutes the difference form of the equilibrium problem. The finite-

difference equivalents of all boundary conditions are automatically

incorporated into the matrix of the quadratic form, and no further attention

to boundary condition specification is required. This statement holds true

whether the boundary conditions correspond to free-edge, partially fixed,

or fully clamped situations, although in the latter case a numerical scaling

transformation will be necessary if the full fixity constraint is not incor-

porated as an absolute constraint.
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In order to illustrate in eomewhat greater detail the type of difference

replacement which is introduced into the energy integral, the following

exarmples of typical terms should serve as models. Typical of the quad-

ratic first derivative terms which appear in the energy expression is the

following:

la dw dx (46)
• ,dx)

wherein w is the generic displacement variable. If the end-point (al) is

numbered n = U and the point I by n = N, this term would be replaced by

the difference approximation.

N

An, n-l - - 1(47)
; _ r A n , n -

where wn is the value of w at point n, and An, n-l is the spacing between

points n and n-l. Form (47) holds regardless of nonaniformities in point-

spacing, i. e., regardless of relative magnitudes of the spaces An, n-"

A term of the form

fIa pw dx (48)

which typified the linear forms contributing to the forcing of the system

would be replaced by

N n- + &n. n+l (49)
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where A 0-1 and AN, N+l are both to be taken equal to zero. An examina-

tion of the difference forms resulting from differentiation of these expres-

sions with respect to a point value wn shows that proper difference fo. mulas

for the second derivative of w, even for the case of an irregular mesh,

result automatically. (The second derivative of w is the proper differen-

tial form associated with the variational integral (47) ).

For terms such as the following:

d w dx (50)

which typifies the highest order contributions to free energy, the differ-

ence approximation is:

n,- n-I n, n+l A l
n> 2 n+-
n= I 2n, n-l +  n, n+ n - n, n+l)

(51)

(n, n+l Wn-I +n, n-I W+ n- n,n+) w

w +n n, -(A n, n+l

Once again, an examination of the difference form resulting from

differentiation with respect to some internal wn shows that the result is

precisely the centered difference form (for a general irregular mesh)

corresponding to the fourth derivative, which is the proper Euler expres-

sion corresponding to the integral (50). Furthermore, it is not difficult to

establish the fact that differentiation with respect to end point values of
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wn in (47), and both end-point and next interior point values in (48) leads

tQ backward difference formulae, for the right end of the range (and for-

ward difference formulae fo, the left end of the range) corresponding to

the natural bountary conditions associated with the variational expressions.

Thus the replacement of the integral expression for (F - W

by difference forms such as the preceding examples (with similar expressions

for mixed types) and addition of difference equivalents of the b6undary spring

terms serves to plrce the entire problem in propc-r difference form and,

at the same time, insure the symmetry and positive definiteness of the

formulation. Solution for the response deformations then consists in

solving the rystems (one system for each harmonic, -n, considered) of equa-
i

tions for the point values of the displacements mu(o) . The systems will,

of course, involve a large number of simultaneous equations, but the special

character of the matrix which can be achieved by proper ordcring of the

unknowns permits efficient solutior. by any one of several well-established

numerical techniques.

The solution of the system of equations will be expressed in terms of

the displacement components at the middle surface at the discrete number of

points chosen for the difference approximation. These middle-surface values

together with the relations for the slopes u() , in terms of these middle-

surface displacements and gradients thereof, permit calculation of the

displacement through the thickness of the shell at the specified mesh points.
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Likewise, availability of -he displacements permits calculation of the

strains and stresses, with required gradients replaced by the appropriaLe

difference approximations. Strains and stresses may be obtained by means

of higher order difference formulae in order to minimize loss in accuracy

due to the difference approximation of gradients.
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11. CONCLUSIONS

The objective of the development reported in the foregoing sections is

the construction of a digital computer program capable of generating stress

and deflection solutions to the thermally and mechanically loaded axi-

symmetrical radome. The technique developed stems from a general

formulation of the appropriate energy expressions in terms of deflection

distributions and proceeds to a difference formulation of the numerical

problem by way of a direct variational method. The energy formulation is

sufficiently powerful to permit inclusion of effects due to an elastic central

boom with no essential additional complexity. Varying degrees of edge

restraint are also capable of inclusion without difficulty. Both iterative and

exact inversion techniques have been developed for solving the resulting large

scale algebraic problem in a matter of a few minutes on a high-speed digital

computer, and the problem is organized into a positive-definite, symmetric

form which insures convergence of iterative methods.

The programming of the analysis has been carried out for the cone and

ogive. The cone program has been written for the closed nose condition as

well as the truncated cone with general boundary condition capable of including

a central boom. The ogive is treated for the closed nose condition. Details

of these programs are given in a subsequent section.

An Appendix B is included with the present report to indicate an approach

based on physical considerations, to the apex boundary conditions on non-

truncated shells of revolution. As noted in the appendix, the physical apex
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boundary conditions should be augmented with a development of mathematically

proper apex conditions.

In connection with the problem of boundary conditions, however, several

important points should be kept in mind. First, some of the physical apex

boundary conditions, or combinations thereof, developed in Appendix B prove

to be essential for boundedness of stresses, rotations, and deflections off the

shell middle surface, as well as of the free-energy integral itself. Thus,

these conditions must, under all circumstances, be enforced at the apex.

Second, the use of direct energy methods such as is done in the present

analysis, is a powerful tool in the handling of boundary conditions. Apart from

direct constraints, such as fixed edges, the inclusion of t-.e free energy of

potential energies due to all sources guarantees the satisfaction of all natural

boundary conditions. Thus, the incorporation of all physical apex conditions,

as derived in Appendix B, which relate to the direct physical connection of

the shell with itself at the apex, should give automatically all the apex boundary

conditions, those not forced explicitly being implied by the variational procedure

and hence appearing naturally.
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APPENDIX A - LIST OF SYMBOLS

a fraction of meridian at which truncation occurs

aij, aiJ metric tensor

Cm coefficient - 1 form =0, =1/2 for m >0

h shell thickness

k spring constants

I meridian length, extended to apex

p pressure

u uZu I3  physical deformation components

w generic symbol for uluzu 3

y1 I y3  coordinates

zi z z z3  phycical rotation components

F free energy

J Jacobian or volume elemnent

R 1 , R Z  principal radii of curvature

T temperature

W virtual work

a coefficient of linear expansion

a mean rotation at shell nose

3local meridian-curve slope

Young's modulus

v Poisson's ratio

6 first variation
1

Q longitude angle =y

cone semi-angle

TiJ stress tensor

11 ij strain tensor

o-ij physical components of stress

An, n+l finite difference point spacing between points n and n+l
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APPENDIX B - PHYSICAL BOUNDARY CONDITIONS AT THE APEX

OF A NONTRUNCATED SHELL OF REVOLUTION

Following is a discussion of the physical boundary conditicns appro-

priate to the apex of a nontruncated shell of revolution, In a sense, the uce

of the term "boundary" is incorrect, since the closure of the shell at the

apex implies that the apex is no longer a boundary of the shell but is an

internal point. However, with respect to the coordinate system utilized

(Figures I and 2), the apex constitutes the lower limit of the variable y?

and hence a boundary of the y', y? domain. The term "physical" ir used

advisedly, since the conditions derived herein are devised on phyrical

grounds. It is well-known in plate and shell theory that the physical F-ound-

ary conditions are not always the mathematically appropriate boundary con-

ditions. The question of mathematically appropriate boundary conditions at

a free edge (not the apex of a closed shell) are resolved automatically by the

use of a variational treatment; i. e., the natural boundary conditions of the

variational formulation are the mathematically appropriate ones and there

need be no further concern about edge physical conditions. At the apex of

a closed shell, however, the natural boundary conditions cannot be expected

to provide all the boundary conditions unless the apex is punctured, and

this puncturing process admits solutions which should not be present for

the closed shell.

The following development of physical conditions appropriate to the

apex of a closed shell is, :herefore, only part of the story. The degree to
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which these conditions coincide with the mathematically appropriate ones

will require further investigation.

The types of shell shapes of practical interest fall into two categories;

those having a physical singularity at the apex, such as cones and ogives,

and those having no such physical singularity, such as ellipsoids and hemis-

pheres. Within the coordinate szheme used herein, however, it must be

understood that a singularity is present no matter what the shape of the shell.

This is evidenced by the singular behavior of the metric element all due to

the presence in this element of the factor l/cos2 P , for the blunt-nosed

shell and due to the fact that R, --- )0 for the pointed nose shape. Now this

fact leads to the preliminary conclusion that certain terms in the free-energy

expression contain nonintegrable singularities. This, of course, is an im-

possibility since the free energy must be bounded. It will turn out that the

physical boundary conditions derived herein are precisely the conditions

necessary to keep F bounded. It should be emphasized that analysis of the

apex region is essentially a three-dimensional problem in which the shell

assumptions are invalid. Nevertheless, the apex conditions derived herein

are conditions which should be approached in some sense by the shell

solution as the apex is approached. It is in this context-that the present

appendix is to be interpreted.

The physical boundary conditions at the apex may be stated as follows:

As the apex is approached, yZ -. * 0, and the entire range (0, 2w) of y1

approaches a single common point; i. e., as y2 -- ?0, all values of yl
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between 0 and 2w are physically coalescing to a common point. It follows

directly from this fact that, as yz ---*0, both the physical displacement

vector u and the physical rotation vector, which will be defined as i (the

rotation tensor will be denoted by , and its physical components, by zi),

become independent of y1 or equivalently, of 0. This, however, is pre-

3
cisely equivalent to the statement, following Sokolnikoff , that 5 and i

become parallel vector fields with respect to latitude circles as yz-.. 0.

This may be stated mathematically by prescribing the condition that the

intrinsic or absolute derivatives of i and d with respect to 0 must vanish

as yZ -_.0. The statement then becomes,

as yZ -- 01Pi dyJ ___>-0
*J dO

(B-I)

d yJ y0

dO

but dYJ 0 j 2,3
dO

(B-2)
IZ j: I

Thus (B-1) becomes:

j
as y. -- O 0 '1

(B-3)

S---0,1

Expanding the first of these (the second follows by analogy)

as y--- 0 + J ---- 0

o r aak [ (B-4)
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Expanding still further, this becomes:

as y._O + a- (+a 1  _Z-- 0
&Y1  2 '%y By

E aZ (a Ba ll
By1 &yz  - (B-5)

ay 2 By Z

Replacing the tensor quantities ti by the physical displacements ui

by means of (1), the above relations become;

as yZ -- o L0 T - + -I . -'-- 0
By l  2 \ yz ay 3

Bay 2 , a l  u) '- 0 (B-6)Glyl 2 Y

au, 3 ay'I -aT uo
By1  2 1 U ) -3

Now, in view of the fact, embodied in equations (14), that the dis-

placement components u i are calculated in a manner implying locally rigid

rotation through the shell thickness, it suffices to satisfy relations (B-6)

on the middle surface y 3 = J. Thus, equations (B-6), specialized to the

middle surface, y3 = 0, constitute three of the apex physical boundary con-

ditions. The other three conditions follow from the second of equations (B-3),

by direct analogy:
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as y -- *0

%E-u Sz 1  al 4 az  a- - 0

-~yy =0

Byl k : 7 9y3-

yy 0

Equations (B-?) take on a greater significance when the actual expres-

sions for the rotation components z i are known in terms of the ui.

These relations are obtained as follows 3

1 I(8,. - B ,Z)I (_,,u, - r, B,.,,
- = BL) (B-S)

taaz z ~ %'l z (0 (uB -( 7)

83 1 K a 1

And, since the relation between the physical and tensor components of is

zi )i (3 (B-9)

not summed on i
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it follows that:

-3

= A4Q51T (;.- (ul %ra I - U
y:zz 'fall yl  (

3  %r/a IaZ 7 %- U a(ul y
Zy 

Ey /

Now, from equation (14)

--H-y + a u a by- uJ - 0 (B-1)
yy 3 0y

no sum on a

or

au3  u aaa
+- a- 3 u: aa %r u a 0 (B -12)

a  (l ) By3

y :0

Hence

a b a Elu 3

a N u a - (B-13)
ay3  (a )3Ly 3  "y aby

y3:

Specializing the rotations of (B-10) to the middle surface, the y3

deflection-derivatives which occur in these expressions may be replaced

using (B-13) to give the final relations for the physical rotation components

on the middle surface.
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y" -u Dy3

3 3

za  -o a(4 H ) - 8 3  (B-14)

yl3 =0 4Ty( 
=0

2U

zz [2 ' al ul E) NJ43 ay)(-14

y =0 y =0

Now, the first set (B-6) of boundary conditions has an alternative interpre-

tation: If equation (14) for aul - u I  is examined, it is seen that this

Dy 3  (1)

quantity appears to diverge as y z 0. For rewriting (14) in the form:

u() y 3ay (B-15)

y =0

the factor JiT implies an infinity as yz ---.*0. However the third of

boundary relations (B-6) is precisely the expression needed to keep ul

bounded at the apex. Without going into the details, it may be stated that

the first two boundary relations (B-6) are precisely the requirements needed

for boundedness of the physical stresses at the apex and of the free-energy

expression as well. The physical stresses 0 ij can be shown to be related
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to the tensor stresses T iJ by the expressions5

0-iJ[ J Ti j  ii aja i (B-16)

in the present case.

(no sum on i or j)

The six general apex boundary conditions (B-6) and B-7) are next

examined for the individual harmonics (values of m) under the Fourier

resolution of Section VII. Considering first the axisymmetric harmonic,

m = 0, it is seen that

u 1 * 0

) 
(B -17)

8 y1

throughout the shell.

in consequence of these relations, it follows that

z2 = 0

(B -18)
z 3 =0

throughout the shell.

Now the second and third of apex conditions (B-6) vanish identically as does

the first of apex conditions (B-7). Thus, for the axisymmetric (zeroth)

harmonic, the apex conditions reduce to two relations:

as yZ --- ,0O

and 1a 1 (B-19)

y3= 0
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The second relation of (B-19) implies that as yZ --.- )0

o z  -- 0 (B-20)

y3 = 0

for both pointed and blunt-nosed shapes since is nonzero at the
ay

2

apex in both cases. The relation (B-20), in turn, implies as y2 _._. 0

[1 0 u 3 4 ] (B-21)ayZ o 0E y 3

y =0

Now the two apex conditions may be expanded to give:

as y __)' 0

au 3  + 0 u2  0 0 (B-22)

ay2  Rz

Iouz aZ (RI cosp) - ou3 cos ] 0

R, cosp ayz

y =0

But a (RI cosp) is equal to the sine of the semi-angle $

a 0

at the apex.

Therefore, the second of relations (B-22) may be expressed as follows:

as y -- 0

(,uz sinp - o os -0 (B-23)

R, cos )
• y3:

y 0
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which simply states that the radial displacement at the apex is zero. The

first of relat'ons (B-2Z) states that the slope-change must vanish at the

apex. In other words, the apex angle must not change under deformation,

and the apex material must not open up.

Next, the implications of (B-6) and(B-7) for the first harmonic

(m =1) are considered. Relations (B-6), give the result:

asy+>

1 u + 1 u Z  +u 3 _ 0ay z 1y 3

8 8 3y=0

S(yz 0 (B- 24)
U ___ _ I U y 3 0

y =0

Now

sin
ay

2

3
y = 0

and (B-75)

= - coCos
ay 3

3y =0
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So that relations (B-24) may be rewritten:

as y2 0

F [U + 1u sin- u3 COSl 0R, , ,o ospR1 cos L ,=o

+ U l Ul sin~ 0 (B-6)
-y 3 = 0

u - 1  cos -- ) 0

y= 0

But any one of these three relations is derivable from the other two, so

that only two are independent.

Following from (B-7), (B-10), and (22), similar relations must hold for

the 1zi

as yZ .0

I11 + I zzsin z 3 COS 0

R1 cos
y=0

Z- zi sin3 ] 0 (B-27)

y= 0

z3 + cosCS -0

y 0
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and again only two of the three relations are independent.

An examination of expressions (B-14) for the z i at y3 = 0 indicates

that I z2 and Iz 3 become indeterminate as yZ . 0. For

Ii [(8 u + u

y=0 y3 =0

Izj ( -,u I cosp+ 1u3 (B-28)
R, cosyy= 0 y 3= 0

Iz 3 l 1 ( - u  - u 1 sin p) - 8 ]ul
8y

z
y 0 y 3 = 0

However, some thought on this matter indicates that the numerators and

denominators of the indeterminate forms must proceed to zero at the same

rate, as y2 - 0, so that these forms are in general finite, nonzero quanti-

ties, and two of expressions (B-26) and two of expressions (B-27) serve

as the apex boundary conditions for m = 1.

For m > I the consequences of (B-6) and (B-7) are as follows:

as y . 0

[ I (m mu l + mu sin p - r.nU 3 cosp) 0

R, cos 7

L~y 3 = 0
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m mu - sin Pmu] ; 0

y3 = 0

m mU + cosP m u1  -> 0

y3 = 0

(B-29)

with analogous expressions holding for physical rotations mz

Now if the second and third relations of (B-29) are substituted into

the first, and the same operation is performed on the analogous zi-equations,

the following results are obtained:

[rm U, - (-) muj 0

3y=0

(B -30)

y =0

Hence, as y z-4 0

mUl j---O0 and mZ' . __. 0 (B-31)

I =0 y3 = 0

But then it must follow from the second and third relations of each of the

mui conditions and the mz 1 conditions that, as y2 -- ).0

mui j----0 i = 1, 2, 3
M u i y 3 = 0

(B-32)

mz 1  0 i = 1,2, 3
y3= 

0
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The apex physical conditions for harmonics higher than the first (for m >1)

are thus given by the condition that all middle surface displacements and

rotations approach zero as the apex is approached.

The expressions for the m z i may be obtained from (B-14)

m )yZ RZ
mz1 2 + 213-

y3 = 0 y3 =0

m R1 cos mU cosP + m (B-33)
3y3=0 

M y =0

z = m u u sin )
Rcos P -y2

-=0 3
Y =0

Once again, the physical rotations mz2 and z3 are indeterminate at the

apex.

The questions which must be answered by considerations of mathe-

matically proper boundary conditions are twofold. The first relates to the

indeterminacy in the rotations. The second relates to the number of apex

boundary conditions appropriate to each harmonic. It would appear that

there should be three apex boundary conditions on the zeroth harmonic and

four for all higher harmonics. The physical conditions lead formally to

two apex conditions on the zeroth harmonic, four on the first harmonic,

and six on higher harmonics. The six conditions, however, may overlap

due to indeterminacy in the rotation components.

'WAIL Th 59-22 712



The determination of mathematically appropriate boundary conditions

at a singular point of a differential equation, such as the apex in the prerent

problem, is discussed formally by Friedman7 . The mathematically proper

conditions are shown by Friedman to be the specification of the conjunct

(or bilinear concommitant) of the desired solution with the initials of a

linearly independent set of solutions of the homogeneous differential equa-

tions. Actual implementation of such a program forms a considerable

effort in itself and will not be attempted herein. The ultimate results of

such an investigation should, however, agree generally with the physical

apex conditions derived herein and should provide the additional informa-

tion needed to explain the counting and indeterminacy questions which the

,,,ysical derivation leaves unanswered.
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APPENDIX C

DYNAMIC PROBLEMS

In dynamic problems slich as vibrations or transient

loading (pressure or therml) it is necessary to fors1rlatea

kinetic energy integral for use in conjunction with the free-

energy expression (32) or with the simpler strain energy, V.

This kinetic energy expression is easily cost in the tensor

form aprroprite- to curvilinerr coordinates and take. the

follo',in- form (dots denoting ti. e-derlvatives):

T = J dy'dy 2 dy 3 '

(C-i)

77 p J dy'dy 2 y i.j

,n the cas' r rf orthorrnal coordinates only.

wherein p i1 -hell materinl density, de lnotes tenior velocity,

and ;' is phvsical velocity. Under vibration ,t i single

frequency w,) the kinetic energy becomes

W, = 2 p j dy'dy 2 dy 3 aiJ . irj

(C-2)

. p J dydy3 2 dv 3 uiui

J.)-4



The availability of the foregoing energy and work forms

permits formulation of the varinius clisses of prcb2e-s to be

encountered in radome aonlications. The underlyin7 )rincfr;Ie

in the formulation is Hamilton's or, whit is equivalent in

the direct variational formulation, the Iir,)nge equatie.ns rf

motion. In the presence of thermal effects, the pctential

energy is to be replaced by the free energy. Fnllc..in7 r

classification of the v-riationnl )rinciies to be used for

various c'-.ses n' interest.

a. Free vibratinn:, without thermal effects:

I-ti

(T-V) dt = 0 (C-3)

.to

where b indicates first variation and integration with renoect

to time is performed between two arbitrary limits, to -3rd tl.

b. static pressure loading, without therna] effects:

b (V-W) = 0 (C-4)

where bW = dy Idy2 J(y 1 ,y 2 ,0) p3 bu
3  (C-5)

c. Thermal loIdingwithoiit pressure !eoding:

b (F) = 0 (C-6)
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d. Dynain-c pressure loadi.pg .-!ithout therm~al effect!-:

(T-V+W) rdt = 0) (C -7)

toI

1,:,here the vqrih.ticn opera~tion on 1- trfl'es the form:

( dtlt dyldy2 J(y',y 2,l) P3 113  (CG-8)

ito

P. m-,ultaneous ther~'al and pressure -tritic lor-)inl-:

b (F-W) = 0 (CG-9)

'*hore 6W is as given in (38).

f. Dynamic thermal loading:

; l( )dt = 0 (C-10)

r . 7-imultaneous thermal and pressure dynamic loadinp,:

(-F+W)dt = 0 (C-li)

to

It should bc noted that case (g.) is actually all-inclunive,

provided the vanishing of T in static cases and equivalence of

F and V in isothermal cases is recognized.

This concludes the classification of the various problems

which fall within the cat~gcry of linear analysis. W'ithin this

limitation of linea-rity it is permissible to superimpose effects.
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For eY.,mr! e, the th r'.a! lnd 'n.,1: Ach !.-es it~s appearance

in the free-ener7y function, F, my ho interpreted simply as

n loading equivalent to pome Tr.ss,-e distribution and with

scme nsioci"qted boundary corditir cs. The response to this

thermal lrndin7 may be c.lculated s earately and then super-

irposed upon the response to other londings Fuch as pressure.

This linear arnlysiswith its consequent validity of

superposition, breaks dr.,n in certain cases .hen one loading,

be it therma] or otherwise, induce:n significnnt membrane

tresse- in a shell, and a second loading then acts to deform

the shell in a locally normal direction. This set of circum-

rtances is handled by an initial-stress type of nnnlysis and

is sitrmar to situations arising in buckling problems and

centrifugal stiffening effects. Tts treatment requires the

introduction of nonlinear strain-displicement relations and

will not be handled herein.
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Metric Tensor for General Shell of Revolution

2 y3 2 2 2
ds 2  dy + () dy z  + (R 1 - y 3 )2 cos-P dy1

13Z
aij = al j = 0 :i

all - (Rl- y3) 2 cos 2 P = I/a 11

a 2  (- 2) = 1/a z z
RZ

a 3 3 = I = I/a 33

%a aij a,, azz a 33  = (R- 3 (I- r) COS

4ADD 57-. 720



C:4,4

AN-
N IL

WADOTIR 9-,-2 72



Metric Tensor for Cone

R, yz tan X

Hz = o

aij =a J = 0 i / j

azz I l = L/a z z

a ll = (9 sinX- y coskX = 1/a"1

a33  
I a 3/a3

3 = (y sink - y3 cosk)
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CHAPTER IV - PART B

TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTIONS

OF HEAT CONDUCTION EQUATIONS

By Frank Lane
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B. TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTION

OF HEAT CONDUCTION EQUATIONS

SUMMARY

An analysis is made of the possible growth or accumulation of trunca-

tion error for explicit difference numerical calculations of the time-depende

temperature distribution in one-dimensional or slab configurations with

constant-property materials. Two limiting cases are studied: (a) the case

of homogeneous or zero initial temperature values and step heat input at

one wall with the other wall insulated, and (b) the case of arbitrary nonzero

initial temperature distribution and both walls insulated. For both cases,

it is proven that as long as stability criteria are satisfied, the truncation

error does not accumulate. Moreover, since any slab problem involving

constant-property materials with variable heat flow through one wall and

insulated opposite wall may be formulated as a superposition (of Duhamel

type) of these two problems (a) and (b), it is apparent that truncation error

will not accumulate in general providing stability criteria are satisfied.
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The interpretation of these results for variable-property materials

must be done somewhat intuitively, but it is expected that they hold in this

case as well. One may resort, for this purpose. to the argument which

replaces the variable material properties by local or instantaneous values

and invokes the constant-property result in the small. Proceeding in this

way, the result should hold in the large.
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TRUNCATION ERROR GROWTH IN EXPLICIT DIFFERENCE

SCHEMES FOR NUMERICAL SOLUTION

OF HEAT CONDUCTION EQUATIONS

1. INTRODUCTION

In the finite-difference computation of temperature distributions

through radome shells under the influence of aerodynamic heating, the

thinness of the shell together with the values of specific heat and conductivity

exhibited by ceramic materials dictate that the computations be performed

using a rather course space-mesh (dividing the shell thickness into about

six equal intervals) relative to shell thickness and a time step chosen

relative to the space- mesh such that the stability criterion for error growth

is satisfied. The time step required for stability may be so small, due to

shell thinness, that for a typical trajectory of, say, ten minutes duration,

as many as 20, 000 time-steps may be necessary to span the trajectory.

(Incidentally, this requires only three minites of IBM 704 time.) The

occurrence of nonlinear phenomena, such as radiative boundary conditions

depending on the fourth power of surface temperature, dictate that the ex-

plicit scheme be utilized rather than an implicit scheme which would permit

larger time steps. The advantage gained by the use of fewer time steps

would be more han offset by the nonlinear algebraic problems associated
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with the implicit scheme in the presence of nonlinear boundary data or

nonlinearities imposed by temperature-dependent specific heat and/or

conductivity.

The truncation error associated with the relatively coarse space

mesh, and the large number of time steps required to compute a trajec-

tory raise the question of the meaning of such a computation. Does the

accumulation of truncation error render meaningless such a calculation?

Following is an indication that in at least two limiting cases, the trunca-

tion error does not build up so as to render results useless after a large

number of time cycles. The two cases treated are (a) the case of constant

heat input at one wall with the other wall insulated and (b) the case of zero

heat input or output at both walls such as would be expected after radiative

equilibrium is reached during a flight trajectory calculation. In this dis-

cussion only truncation error is considered since the simple difference

scheme and the small number of space intervals utilized raise the truncation-

error question. Roundoff error, on the other hand, is small for the classical

explicit difference scheme and, for a time step which satisfies the stability

criterion, cannot be magnified by repeated time cycles. There still remains

the question of accumulated roundoff error, but this is not treated herein.
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2. PROBLEM A

Consider first the case of a slab at zero initial temperature subjected

to a step heat input QH (t-o) at the outer wall and insulated at the inner wall.

The exact solution to this problem is the following:

Q ( c xz ch -2 ch (-l)n e- n 2 Wt/ch 2

T = -"wx + -Z 6k -2k _nz cos.nwx

where h = wall thickness

c = (specific heat ) multiplied by density

k = conductivity

0 h w x

II

(The assumption of zero initial temperature is not restrictive since

case (b) will treat the problem of nonzero initial temperature with zero heat

flow at the two walls.)

Now as an indication of the degree to which the exponential terms in

the above series (1) decay with time, it should be noted that, in the difference

method, the ratio P given by

k At

C Ax2 M

where At is time step

Ax is space interval
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is of the order of 0.5. Thus the largest exponential term

e-T2 kt/chZ

may be estimated after N time steps if the space mesh is -L times
M

the wall thickness.

Irz NkAt - z N I

"ir kt/chz e e C(h)2  e (3)

IN time
steps

With a space mesh of I times the thickness of the wall, M - 6 and after6

100 time steps

72

e X e z e (4)

100 time steps
M z6

This term, as is seen from (1), is to be compared with terms of the order

of unity. Thus after a time equivalent to 100 time steps in the difference

method, the exponential terms in the series are insignificant. Hence for

times greater than this, the difference in temperature distributions between

two times tj and t2 (both greater than 100 A t) is given very closely by

T - T ( -q- {tz  _ ti )  (5)
tz t ch

This is obviously independent of x.
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Next the difference approximation is scrutinized. The difference

scheme appropriate to the present problem is, in terms of the sketch,

I I I ?

I I F I I -

0

n+I n n n

T = T + (T' + T - 2 T) m=, 2 ..... M-I
m m m+ m

(6)
n+T n n n + 3Ax
M M  - M k Q

0
Tm =0 m 0, l, 2 ...... M

k At
where k At as noted earlier

c(A x)

This may be expressed in matrix form

n+l n
T zAT + b (7)
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where A z (I-2 3) 2p 0 0 * . 0 0

0 (I-2b) p 0 0 . 0

o (i-2f P 0 • • 0

(8)

o 0 . 0 1..)

o o . 0 0 2P (1-ZP)

and where b 0 Tn  n

oTn
0 T~n

* 0 (9)
o

0

k

0

0

0

0

L o
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Now TI z AT0 +b x b

T' z AT1 + b z Ab + b = (A+Ib ()

T 3 x AT 2 +b • (Az +A+I)b

etc.

Thus, the vector Tn at the A time step is simply:

n n-I n-ZT (A +A +......... +A +I) b (12)

Likewise the difference vector between the temperatures at two times

n1 At and n? At is given by

Tnz - T n  (ATZn'+ A722+ +....+ An l  + A7' ) b (13)

'V"
(n z - n1 ) terms

Next, it is necessary to examine the eigenvalues X and eigen vectors of

the matrix A. This is best performed by considering the difference equation

qm- + (L-2 P-X) qm + P qm+l z 0 (14)

m zL, 2 ..... M-L

with initial and final conditions

(l-2 P - ) qO + Zq 1 - 0

(15)
M-l M

ZP q +(L-2PX)q M O

Now let

-1 -2 cos 0 (16)
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where it might turn out that 0 is imaginary, but this possibility is accepted

for the present. Then the general solution of (L4) is

qm = a cos mg + b sinmG (17)

Introducing (L7) into initial and final conditions (LS), there results:

- a cosO + a cosO + b sing 0

(18)

- ccsO (a coB MO + b. sin MG) + a cos (M-1) 9 + b sin (M-L)Q =0

From the first of (18) there results:

b= 0 (19)

since 9 = 0 leads to a result which will be included in those which follow

from the vanishing of b. The second of equations (18) then becomes

- coso (cos MG) + cos (M-l) 0 = 0 (20)

Or, expanding out the cos (M-1) 9 term,

- cosO cosMO + cos MO cosO + sinMO sing = 0 (2L)

so that sin MO sing z 0 (22)

The proper eigen vectors are then given by

On . n n - 0 1, 2, 3 .... M (23)M

where it can be shown that n > M Leads to eigenvaLue results which overlap

those of (23); e.g.

cos (M+ T cos (M- V) . (24)
M

/ E L, Z, 3 .....
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Now the eigenvalues Xn corresponding to the On of (23) are

n : -2 + I + 2 cos n x I + 2 (cosen -1)

(25)
= I + 2 j3 (cos n .)

Thus, finaLly, the M + L eigenvaLues, together with their corres-

ponding eigenvectors are

n z 0 L - 3 ...... 

x [+2zp(cos.- j ~+ 2P WooS2' F+ 21(cos3 -L3
nm m IL m ...

L L L

iT 2w 3w
L co o Cos - co o - -

LCO 2 CO -
M

coo-; C1r co cof --- 9f

I r 61r9

M M M

n
q 

L

*1 ..

cos M M cos zw cos 3-w

(26)
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V

Now any vector, such as b of equation (7). is expressible in the form

M

b Z b(m) qm (27)

m=o

where the b(m) are given by

(b, pm)

(i) (pm, qm)

no sum on m

where the pm are the row eigenvectors corresponding to km(the qm are

the column eigenvectors) and the symbol (b, pio) indicates inner product.

Now the eigenrow pO corresponding to Xo z 1 is seen to be given by

pO I 1 L L I ........ L L (29)

and the normalization factor (pO qO) is

I t
(pO, qO) + + + + ..... + + + z M (30)

Thus, the vector b is expressible as

b z L 2 P xQ L.. 0 +" (bpm) qi
k 0 (pro qm)

L 0
L 0

0
0

I I

(3)
AxQ L + M= bm qrn

MA
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Now it is easily seen from (26) that for m > 0 the eigenvalues Xm

are less than unity

Xm < L for m> 0 (32)

Moreover, for L < I which is necessitated by the stability criterion,

) m > - L (33)

When P < i the inequality holds in (33).

2

Thus, I
for p <

(34)

Xm < I for m > 0

For example, when M z 6, 3 z 0.4

ko = I

- L +0.8 (cos -) .894

XIz L + 0.8 (cooi..- -L) = 0.60
6

X 3  L + 0.8 (cos 3.T . 1) - 0.200
6 6 (35)

X z I + 0.8 (cos 4w L) = - .0OO

4 "r )z .0

X5 z L + 0.8 (cos 5w - L) = -. 492

X6 z L + 0.8(cosw-1) z -0.6

Now, consider the quantity

An b

which is typical of terms occurring in (13).

VADD TR 59-22 739



nm
Anb An bmq

mx 0

(36)

M
Sk ) n bm qrn

Now (.894)100 is less than 1 so that for the case cited in (35),
30,000

when n > 100, recalling that Xo • 1,

A n b (Xo)n boqO boq 0

,1XQ (37)

Mk i
I

by reference to (31).

Finally, referring back to (13), for nj, n. both greater than 100,

Tnz Tnl = nZ+ + ....... + An +A

a (n2 - n) PAxQ L (38)

Mk 
5
I

II III
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V

but

bxQ kAt AxQ

Mk c(Ax) z Mk

(39)

0 At

hc

ao that, for na , nj both > 100

Tn z - T n z . (tz -t) hc L (40)

L

which is seen to correspond exactly to the analytical result of equation (5).

Thus it has been shown that the difference between the temperature

distributions calculated by the explicit difference technique at any two

time steps agrees with the analytical result after a certain time (say corres-

ponding to 100 steps) has elapsed. This shows that there is no accumulation

of truncation error despite the coarse space mesh regardless of the number

of time steps computed.
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, 3. PROBLEM B

Consider next the case where no heat flows through either wall but

where there is a nonzero temperature distribution at some time to.

T(x, to)

0 x P h

The argument used in this case to prove that truncation error does

not accumulate after a large number of time steps is based simply on energy

conservation. First, it is known that the solution to the difference scheme

(which is simply system (6) with no Q term) approaches the flat or constant

temperature condition with increasing time and that this uniform distribution

is the correct one for large time. The only question remaining is therefore

that of a possible constant vertical displacement between the exact and the

difference solutions. Once again round-off error is not considered.
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T
exact

difference solution

0 x h

It is this shift which can be shown not to accumulate by virtue of

accumulated truncation error.

Consider the energy content or simply the integrated temperature for

the initial distribution.

h T(x, to)dx (41)

This is approximated by the trapezoidal -ule quadrature

0 nIh, Tno T o + (o no nI N , TM no n
T(x, to) dx +- 1 

+ TZ + .......+ TM ) (42)4 2

where noAt a to.

Define the scalar quantity Xn by

n n
S+i ( 1 + T2 + .... + T1i (43)
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Now consider the expression for In + I utilizing the homogeneous form

of system (6).

n+lI n+Ln l T O  T M  nl n Ln+
n L + + (Tn + Tn + ....... +TM

+ 2(T ) + ( +) (44)

nn n

Tn I o

Z 1 7 + 2(T=- + ImT + 2 AT

m - I

Expanding and collecting, this becomes

n+L I n n I n n n
=(T O +2(T 1  - To ) + -Z ( TM + 2P (TMI - TM)

TI +( +Tn  -2 Tn  )

STZ+ (TI + T3 -2 TZ

+

(45)

n (I Tn
+ TM- 2 + P M-3 + TM - 2 M)

+ + P( - + TM -2 TM.)

L n ln (Tn n n
To  + I Tn + T2 + .... T

2 0 2 M T +M-

5 n
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Thus, neglecting round-off, the trapezoidal-rule quadrature is

"conserved". That is, the value of In is the same as the value of In o

for all n greater than no . Any error (aside from round-off) in the trape-

zoidal-rule approximation to r T dx appears directly as a quadrature

error at initial time to, and never changes. This rules out the possibility

of an increasing displacement between true and difference-calcuLated

temperatures due to accumulated truncation errors for large times.

Stated differently; the analytical or exact solution conserves the

integral T(x, 0) dx for all time after Q vanishes. The difference

solution conserves In which is the trapezoidal approximation to thir integral.

Neglecting round-off, if T(x, t) is the exact solution with initial values

T (x, to) and if
h

Ino = I0 T (x, to) dx + t o  (46a)

where do is quadrature error at time to

h
Then I T(x, t) dx+ t o  for all n>no  (46b)

since the two integrals are equal and In = In o

Thus the accumulated truncation error cannot cause the increasing divergence

of the exact and difference solutions; i.e., In differs from the integral

h

LhTdx at time t by cxactLy the same amount that 1n° differs from

hTdx at time to.
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APPENDDI

EXACT SOLUTION OF PROBLEM (A)

Now it can be shown that the general nth eigenrow(corresponding to

k'n I + 2A(Cos 1V - 1) is given by

(n) 'COB On, Cox zons coon 30n, coon 40n. -.cO8(M-I)Bnicousv%
2 

9 (47)

where it should be recalled that On st nir/M.

The expression (29) for p0 is obviously a special case of this for

(n a 0, On 0. Xn z 1). With some trigonometric effort it can be shown that

the nth norm N(n) is given by

Nn a(Pn) -q~n)) = M for n z.M (8

aM/2 for0O<n <M

Having this data, it is now possible to write down a complete solution

to problem (a).

From expressions (12) and (27)

Tn n-I n-2 (m
=(A +A .+.....A + A +I)b b q (9

IM- L n-Ia +b qm

4 b~ ) A + + ) q(i)
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But

A r q (m) x(k(ml)r q (M) (50)

so that

T bm) n1+' + ..... + (51)

Now

b =m x N Pm b)
(M)

I (P4xQ)(iCox MO )N(in) k

L -'(52)

II

M QAt -m
N(M) h c

using equation (39)

Therefore

= QAt

hC

bMz QAt (.)M (53)h C

bm a 2QAt (-)m O<m <M
hC
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And, we have finaLLy for Tn the result:

n  1 L -I n-2 n-3

Tn n -+X +x +...+L) cosr/M

L cos Zr/M

I cos 3w/M

cos M Ir/M

n 2 'n-I n-2 1
,~(n- +>,2+...+,)co.,,/M, . 2 ,C+s+..+ co i3/M

coo 4w/M cos 6Wr/M

cos 2MW/M coo 3wr/M

X M M + +)
-I

L I(..)M (54)

Now

x m I + 2 p(cos m . 1) from (26)m -M

n

and n-1 2 ..... + i) : f m o (55)

m
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F Th us (54) may be rewritten in the form

I1 11
nQ~ cosw/M 3) coo 3 flCB I/M
T QA cos-~ CO2 TM 2lTz)21.) oMi

hc C cooX1  2-) */ co IM -co6
a 3

+l)Cos MW/M os co2Mv/ Cos 3V

MM

Recalling that, for p< 4 ; < 1 for m > 0, expression (56)

atXn adhnen
may be simplified for a time sufficiently large tha anhec Xm

mi >1, are negligible.

T 1 h ~~gc~ I P(l-cosl!) co:Z/M p(-cs*'f) ow/

that X~ <<1LI
CoB Wr Cos 2 W

(57)

1M I
- I cos 3wIM + *** +(1)-

coo W/M 2 i(l-cosMi
p M-o-) o6/ M -

coo 3 Wr(4
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In the above expression, only the first term is time-dependent.

This corresponds to (and agrees with) the first term in (1). The remaining

terms must correspond to the second and third terms in (1). A numerical

check indicates that this is very closely satisfied for the particular case

where M z 6. In facts the error can be shown to be given by the difference

between exact integrals or weighted integrals of these terms and seven-

point trapezoidal- rule quadrature approximations thereto.
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C. THERMAL STRESSES IN SPHERICAL SHELLS
OF ARBITRARY THICKNESS UNDER

ARBITRARY AXISYMMETRIC TEMPERATURE DISTRIBUTIONS

1. INTRODUCTION

The present report describes an analytical method for determining

the elastic stresses developed in a complete spherical shell of arbitrary

but uniform thickness under axisymmetrical thermal loading. A related

problem has been solved by McDowell and Sternberg (Ref. L) with the

restriction that the thermal loading be entirely steady (i. e., the tempera-

ture satisfies Laplace's equation). It is the purpose of the present report

to extend their analysis to the case where the impressed axisymmetric

thermal Loading is an arbitrary one and may have come from transient,

unsteady conditions. In other words, the temperature distribution is not

restricted to be harmonic in the present analysis.

The results should be useful in two respects. First, they provide

estimates of thermal stresses in the nose region of blunt-nosed radomes

under transient thermal loading. Second, they should serve as numerical

checks on the solutions to radome thermal stress problems obtained by

thin shell theory in the nose region.
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2. ANALYSIS

In the absence of body forces, the general equations of thermoeLasticity

are given (Refs* L, 3 and 4) as

Equilibrium: O*iJL o. 0 1
xj

Stress-Strain: Tijs 2 P [e4 eij + L- T)6]* (2)

Strain-Displacement: 2 eij a + (3)
ex exi

where p is the first Lame constant, v is Poisson's ratio, a the coefficient

of Linear expansion, and x i a rectangular cartesian coordinate system.

In the absence of surface tractions, the boundary conditions are given as

Tijj = 0 on B, 
(4)

where j are the scalar components of the outer unit normal to the

boundary surfaces B.

The solution to (L), (2), (3) will be obtained in the following manner:

The complete solution tS] will be subdivided into two soLutions,[SO] and[S*]

such that

s]. - + Is*] (5)

where (SO] represents any particular solution to the general equations (L),

(2). (3), and [S*] is the solution to the so-caLLed'residuaL problem" which

satisfies (L), (2), (3) with T zO and annuls the surface tractions which

[SJ gives rise to on the boundary B.
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It may be noted that a particular solution to (L), (Z), (3) may be

found immediately by setting

Ui .2 , (6)
8x i

with = a (l+V) T r k o T. (7)
-p

The temperature field T in this problem need not be steady-state

(i. e. Vz T 1 0) and therefore + need not be biharmonic.

This known axisymmetric temperature distribution T (r, cos 9)

may be put in the form OD

T (r, cos 0) = Fn(r) Pn(cOs9) , (8)

where r, 9 are the radial distance from the origin and Latitude measured

from the x 3 axis, respectiveLy. (The cyclic longitude coordinate may be

denoted by Y.) The functions Fn(r) are given by

Fn(r) = 2n+l T(r. cos 9) PncOs 0) d(cos 0). (9)2

The particular solution to the Poisson equation (7) may be obtained by

first substituting functions of the type

4n (r, cos 0) = fn(r) ° Pn(cOs 0) (L0)

into (6) where VI in spherical coordinates becomes, for axisymmetry,

V =a_ + 2 a+ ct9a+ a&LM)

Bra r Br rA 88 ra eZ
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There rerults a differential equation on fn(r),

fn"(r) + fn (r) - n(n+' fn(r) = k. Fn(r) , (12)

for which a particular solution may be given in terms of a Green's

function as

fn(r) =k o  j n-L 4n+2 _ rn 4 1 j .+LFn( d4 (13)2n+ L rII

where r, is the radius of the outer shell. (The radius of the inner shell

will subsequently be denoted by ro .) And hence,° ~rrl
-, 0  -n-I nn-on - r L -r jFn,)d PnlCOsO)

(14)

is the particular solution to (6) that is sought.

For notatioiaL purposes define

2n+ I I

Hn(r) = - krn- Cn+I F(;) d (16)
ko+ I r  n t

and denote cos by p and sine by . Then [Sn9 may be written as

+n(rp) r (Gn (r) Hn(r)) Pn(P) , (17)

radial deformation: un0 -= -r (n+L) Gn(r nr n(p) (8)

meridional deformation: wn = l = -= r [Gn(r) -Hn(r)] Pn(p), (0)
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er 0 Sun = rn L) (n+2)Gn(r)- n(n-L) Hn(r) + ko Pn Pn(p), (v0rrnp 8r -rO])

+n Q G(r) + nHn(r Pn(P) -P (r) - Hn( PnYYn r r -- n

e z2 L+ { +Q i r + n nr Ph()-P[Ch(r) - nrP0 n r r Be I IrPnp

+ (L-p2 ) [Gn(r) - Hntr Pn(P), (2Z)

rn I rB r w r w)[n+.) Gn(r) + (n-1) Hn(r]P(P), (23)

rrn+t (n+2) Gn(r) - n(n-L) Hn(r)] Pn(p) . (24)

,0' z2I{~~n+) Gn(r) + n1n(r)+koFn(r] Pn(P)+ P[(r) - Hn(r1 P (P)- (Z5)

YYn LIV

0n z-2IL[(n+ L)Gn(r)+ nHn(r)+ koFn(rPn(P)+ P[Gnr) - Hn(r 1 Pn(P)

- ([..p ) [Gn(r) - Hn(r) Pit)1 (26)o r 
-

Tr0n= 2 P&t [(n+2) Gn(r) + (n-I) Hn(r) Pn(P) , (27)

where the primes denote differentiation with respect to p.

The next step is to obtain the solution to the "residual problem"

(where T * 0) and whose boundary conditions are

Tr(rk, -2 [(n+L) (n+2) G(rk) - n(n-1) Hn(rk)]P(p) .  (28)

1rn(rk p) -- 2& Bn+2) Gn(rk) + (n-I) Hn(rk)] Pn(p) . (29)
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where ka 0, L. In view of (LS) and (L6), on the outer surface

,rn (r, p) a 0, 00)

T * (rl, p) z" 0 ,(3 L)

while on the inner surface

Tr (rot p)- -2 It n+L) (n+Z) Gn(ro) - n(n-l) Hn(ro) Pn(p), (32)

T r~n(ro p) - - Z 'n+2) Gn(r c) + (n-L) Hn(ro)]P n (P) . (33)

The solution of the residual problem of Elasticity Theory can be traced

through Refa. 6, 5, 7, 2, and finally I, where McDowell and Sternberg

have presented an explicit solution in the form of a linear combination of

four separate solution fields. That is,

[sn] a an[An] + bn[Bn + cnA n .] + dn Ll (34)

where for [Ani:

nr1  45
ZruT (fj) pn(p) 435)

A rz
w -P--rI (Z)n Pn(p) , (36)

T n(n-t) (!-L) 2 (1)n Pn(p) (37)rr r F(3

Tyc!4 1- n' ~( P ) nA (38)
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Tr9a (n-L) N1) n(~f 1 'p (40)

and for LBn]:

2 p uz(n+L) (n-2 + 4v) r(_!_,n P (P) ,(4L)

A n n

Trr - (n+L) n+ L) (n-Z -2) 2 (.f.)f Pn(P) (43)

=Y- - (n+i) iIn-2 - 2 (Zn+L) ~I1(~lP~)+(n+5 -4 v) p~Jngp , (44)

=(n+ L) (rig + 4n + 2 + Zv) (.fn (p) - (n+5 - 4v) p nf~l~p (45)

T rO (nz + 2n -1L+ pv -r~)lr Pn().(6

The uoLutions for A-.n-.jand[B... -are obtained by repLacing n by -n-I
wherever it appears in equations (35) t rough (46). Hence for

[A-.n..I (and noting that P..n.1 (p) zP6(p) )

r n (P)

A ra n+I 1
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* (~ [(n+L n44fL ' +p (l)fl+L pt (50)

', M )Pn(P +

'Too - 1 ))2 [z + 2n+L) 1 n +1 LP) - ( 4 n+l Pn(P) 51)

T r G (n+ 2)"!l P- f+l Pn(52)

and for {B n -]

2pu -n (n+3 -4v) r (;w n + Pn(P), (53)

L w - (n-4 + 4v) r A (!A) n+l (54)

= nn+3 - 2 , (!1) n+ (55)

F 1 n+L n+I

nr3 - 2 (2Zn+L) v (2-) Pn(p) - (n-4+4v) p(~ lPp. (561

'To* n -Zn-L+2 I] P.np(P) + (n -4+ + 4+v) p . n (S7I)17

rQ = (n"+2z ,) 2 +.2. n  Ph(p) (58)

The coefficients an, bn, Cn, dn are determined from the boundary

conditions on Trr and TrO • Combining (37), (43), (49), (55) and equating

to (30) and then (32); and then combining (40), (46), (52), (58) and similarly

equating to (31) and then (33) will yield n sets of four simultaneous equations

for the determination of an. b, C 1n dn .
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These equations are

n(n-L) an - (n+ Q[(n+1) (n-2) 2 bn+ (n+I)(n+2) cn+n[n +3n -2 Vdn0,

(59)

-(n-1) an + (nz + 2n- + 2v) bn + (n+2) cn + (nz - 2 + Zv) dn 0, (60)

n(n-l) p an - (n+L) [(n+L) (n-2) -ZI pnbn+(n+) (n+2) n Cn

(61)

+n[nz +3n-Zv pn'dnzl (n+1) (n+Z) Ch(ro) - n(n.L) Hn(r]

n-2

-(n-1) p an+(n +Zn-I + Zv) pnbn +(n+2) p,-3 cn + (n' -2 + 2v) pn'Ldn

- 2t L(n+Z) Gn(ro) + (n-I) Hn (ro)]

where p -r- < I . Note that the terms in LSI~J containing

ao, a,, do will not contribute to the stresses and therefore represent

rigid body motions and will be indeterminate.

Y: TR t 1-- 761



APPENDIX I

SIMPLIFICATION OF eo AND 0

00S

The dependence of e., (Eq. 22) and ,n (Eq. 26) upon

Pn(p) may be removed in the following manner:

The differential equation satisfied by Pn(p) is well known to be:

(L - p) P " -_- (nz + n) Pn + Zp P . (A-L)

And therefore the original expressions can just as well be written as

o-n ( Gn - n2 H Pn (P) + P [Gn H] P'(P) (A-)

ez n " I n+l)Z GnnZHn+koFn Pn(P) P n fin] P A(p) (A-3)
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APPENDIX U - TEST CASES

Case L: T (r, p) T O (constant throughout shell)

This case should give a trivial stress distribution.

By inspection 70 (r) zTo ; Fn(r) z0, n j0.

0O(r) . k01  T'To d4- koTo To -'

Ho(r) ko r r T d = L ko  T) -

1 O9 o [, ,] ,
The particular solution gives Trr = 2L [2 C(r)] " I k°TO° ) -

and 0 - 21L4Go(r) +koFo(r] 2s .. i.3+2}~

T = 0
rG

For the residual problem the simultaneous equations reduce to

2(L+v) bo + 2co= 0

2(L+v) b0 + 2 C 0 p 3  2P 1[ZGo(rO)]

which yield

o:_2 p koT°  ; bo = pkoTo
3T 7T (L+v)

and T'r =Z(+v)bo+ 2( $r co=-4 koToL -I ".r ,

Tic 2(L+v) bb-rCo- 3 koTo[2+- L),] V

0-2 = 0
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and hence T =O +T* =0
Trr Trr + rrz

T T 0 + 0* =0

T = 0

which is the correct result.

Case Z . T(r, p) = TO ( ) cos = To (r PI(p)

This (linear temperature distribution) case should also give

trivial stresses

By inspection F,(r) = To(.r.-) ; Fn(r) 0 (nj )

G1 (r) = To dr. - 0 T [( - (.1
r,

G, (r) = o r- To d4 = kT ) 4-
k° o koTor

H (r) = 4 To d;.-

The particular solutions are

Trr =Z- 6 G1 (r) cos 0 4g koTo-- - 4 cos0

rO = 6p G,(r) sin 0 = koTo ) .E_) sir 0

0 = - 2 1 [ Gi(r) - ko F,(r) cos 9 .L.. koTo 4 +4q cos 9

0 0
T = To
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The simultaneous equations become

2(2+Zv) b, + 6 c, + (4-2v) d, = 0

(2+2v) b, + 3 c, + (-L+2v) d, a 0

2 (2+2v) pb, + 6p "4 c, + (4-2v) p7- d, = -2 p. 6G,(ro)

(2+2v) pb, + 3p "4 c, +(_[+2v) p-2 d, -2 I. 3G,(ro)

from which d, =0; c, z - 2 IL koTo; G, z P koTo

[5 5 (i+ v)Is ,] .V
and T"r [4(l+v) (2__ b, + 6(r 4c coo 0 pkoTo  - 4]cose

T*= [z(L+i.) b, + 3 r J44 C1 ] sine0 2 pkT0 [Vr - r 4]juin@

= *b,-3 ccosg .i)koT o 4 +(1--4 os e

Hence Trr T r + T*rr = 0
rr rr +  rr

T T 0  + T* 0r e r r 0

To T=T0 +T* =0

which is the correct result.
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Cse 3. T(rp To -°"- L (Surfaces at different uniform temp.)
Ca.. ~ rr1 -r 0 K

This is a purely radial temperature distribution for which the

stresm distributions are easily calculable (References 3 and 4)

By inspection Fo(r) - T or.o (- Fn( r)-a0 n0

r /

- 3 To ro a koTor r L )
Go(r) k .- d4. a - ) +

.r, -rr r1 -j r

o rir, -r Lr -r o [ I
The particular solution gives T r 0aZI r Z p 4kToro 0  3_ 4P+T

0 0

To ..+, 1 koTor L
T 4T.z- r, -o(Y)+koFo(rrl, ro  +r r

For the residual problem the simultaneous equations become

2(1+v) b 0 + 2 C z 0 ()

ao + (-L+ Zv ) bo + 2 co + Z(-L+v) do x 0 (2)

Z(L+ Y) bo + Zp co a - 214 Go(ro (3)

aol " + (-L+Zv) bo + Zp i3 co + Z(-L+v) p1 do - -ZIL [2 Go(ro)-HO(

(4)
Only (L) and (3) need be considered; they yield

0 &k0 To ro F1  P o -C
(t-ij(rj-r P + ; b 7
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Hec T Z~) o+2 akoTOro [~-3 -a

-r 0 and

--- j -rlr, 1- 3

I-kvor 
L-

0  1 r +r r1 
[ (0 3

T gLET 0 o r,r, f+r -1 (x rjroro) r 2, 0
r I v 3r?- 3 r r 1  Pr(1  ~ 0  0  r

This solution checks with the stress distribution calculated using

the simple schemes available (Ref. 3 and 4) for purely radiaL temperature

distributions.
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SYMBOLS

a fraction of meridian at which truncation occurs

aij, a metric tensor

dmn coefficient =0 for m =0 ; l for m >0

h shell thickness

k i  spring constants i = 1. 7

1 meridian length, extended to apex (L)

m harmonic number

n number of spaces along generator

p pressure (Lb./L)

w, V, u physical deformation components (See Figure I)

y, y2, y3 coordinates (See Figure 1)

y, z equivalent to yz and y3 . respectively

A matrix associated with quadratic form

Cm coefficient =1 for m =0, = L/Z for m >0

F free energy

J Jacobian or volume element

K, edge moment spring constant at base; k, 12

Kz  edge shear spring constant at base; k. /a

V- transverse displacement spring constant at truncation; k3 / E I

K4  bending spring constant at truncation; k 4 /e 3

KS  edge moment spring constant at truncation; k5 /4 AZ

K6  edge shear spring constant at truncation; k6 /4

K7 axial stretching spring constant at truncation; k7 /"i
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R 1 , Ra principal radii of curvature; also R- Rz

T temperature; T o reference temperature

W virtual work

aL coefficient of linear expansion

Plocal meridian - curve slope

Po P at apex

4 Young's modulus; t o m reference modulus

v Poisson's ratio

9 longitude angle = yL

X cone semi-angle

J stress tensor

I i j  strain tensor

Gk physical stress in 0 direction; k = 1, 2, 3 for z = -h/2, 0, h/2

physical stress in yZ direction; k = L, 2, 3 for z - h/2, 0, h/2

0-,1 physical shear stress; k = 1, 2, 3 for z = - h/2, O, h/2
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D. DIGITAL PROGRAMS FOR THE STRUCTURAL ANALYSES OF
HOMOGENEOUS CONICAL AND OGIVAL SHELLS UNDER MECHANICAL

AND THERMAL LOADING

1. INTRODUCTION

In this part, the digital programs for the structural analysis of the

homogeneous conical and ogival shell under mechanical and thermal loading are

described. Both programs are based upon the same analytical approach, but

as will be seenthe two programs use different numerical procedures in

formulating the energy integrals. In general, the numerical techniques used

in the cone 'program will be explained in detail and then supplemented by any

variations used in the ogive program.

The cone program is designed for the structural analysis of conic shells

with closed or truncated nose conditions. By merely changing the problem

inputs and machine setting, the analysis can be changed from one condition to

another. In this regard, it should be emphasized that the closed cone is not

analyzed as a specialization of the boundary condition used for the truncated

cone. Rather, independent requirements are imposed for the closed cone;

a factor which adds considerably to the internal complexity of the program.

The ogive program is for the closed nose shell only.

Both programs are designed for the analysis of any general loading where

temperature and/or pressure are involved. In order to analyze a shell with a

generic loading, the load must first be expressed as a Fourier series in the

9 direction. (See Figure I for nomenclature.) Each of the Fourier
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harmonics must be separately analyzed by the digital program, and since the

analysis is based upon linear theory, the final deflections and stresses can be

found by superimposing the results from each harmonic. Taking account of the

Lack c precision of most aerodynamic and thermal input data derived from

unsymmetric loading conditions, it is probable that no more than two

harmonics will be required to adequately describe a realistic loading.

The analysis of the shell geometries is based upon a variational principle

involving the "free energy", F, of the system and the external work, W, of the

mechanical loading. The concepts and analytical details of the analysis

appear in Part A. It is found that the nth harmonic component of the free

energy can be written in the following form, which is suitable for both the cone

and ogive geometries:

(F W)m --- Cmfo I j dyZdy {.) CL O cL A

4 2c(T-TO) 1 LId r
ot

where

As will be shown in Section 2, the numerical method of evaluating the

energy of the cone is not the same as the method for the ogive. For the cone,

the integration through the thickness (y 3 ) is carried out analytically, and the

integration along the generator is done numerically. For the ogive both the

integration through the thickness and along the generator are done by

WAW TR 59-22 775



numerical methods; the integration through the thickness being carried out

using a Gauss quadrature. In both program3 the integral along the generator

is expressed in finite difference form as a function of the w, v, and u dis-

placements of the mesh points. Then, by taking the variation of the energy

expression, a set of linearly simultaneous equations for w, v, and u are

obtained for the n stations along the generator. The system of equations have

the very important property of being symmetric positive definite, which is a

direct consequence of the energy formulation. As will be shown in Section 4,

a positive definite matrix is a sufficient condition for the block tri-diagonal

method of solution of the equations.

By way of contrast, an alternate method of obtaining the simultaneous

equations will be described, and the inherent disadvantage noted. The

variation of the energy expression, equation (1), could be taken in analytical

form thus resulting in the Euler equations and the associated boundary

conditions. These differential equations would then have to be expressed in

finite difference form. Unfortunately, the final simultaneous algebraic

equations would not necessarily be symmetric,and the coefficient matrix could

appear as either positive definite or indefinite depending on the method of

differencing. Furthermore, the solution of the equations would be considerably

more involved. This disadvantage is particularly significant since the matrix

under consideration can be of the order 450.

As yet, no mention has been made of the boundary conditions to be

imposed. In general, the boundary conditions are expressed in terms of

WADD TR 59-22 776



springs, whichovary in magnitude from zero to infinity. A zero spring implies

the shell is free of a particular constrain.. For 'finite values of the springs,

the energy contribution is computed and added directly to the energy matrix.

An infinite spring represents a rigid constraint, and in order to avoid

numerical difficulties in the limit, special procedures are employed.

In Figure 2 , the various types of spring configurations are shown.

The base conditions for the cone or ogive are described by springs K1 and K2 .

The other 5 springs shown in Figure 2 are applicable only to the truncated

cone. With these springs, it is possible to impose any boundary condition at

the truncation including the conditions of the unified radome with a nose boom.

Regarding the closed-nose cone or ogive, independent closure conditions are

imposed depending on the harmonic number. The methods of introducing the

spring and closure conditions are described in Section 3.

Upon solving the system of simultaneous equations, the displacements

w, v, and u are found for n points along the generator of the shell. These

displacements and the first and second derivatives with respect to y2 are the

necessary variables for determining the state of stress, which is discussed

in Section 5 below.

The programs have been written for the IBM 704 digital tomputer with

a core capacity of 8K and at least Z magnetic tapes for the cone program and

3 magnetic tapes for the ogive program. In addition, the ogive program

requires 2 physical drums. The programs can be read into the computer

using either binary cards or binary magnetic tape. The latter method of
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operation is, of course, desirable for economy reasons.

When using the maximum number of spaces (n = 72) along the generator

of the cone, the total running time for the zeroth harmonic is Less than 3

minutes; for the first harmonic with 216 simultaneous equations, the program

requires approximately 5 minutes. Approximately 75 seconds of this time

are required to solve the 216 simultaneous equations.

In the ogive program, the maximum number of points along the generator

was increased to 151, thereby requiring the solution of 453 simultaneous

equations for the first harmonic. As yet, a complete problem has not been

run using the ogive program, because part of the stress calculation is still

being modified. Hence, an accurate timing of the program is not available,

but it is estimated that the total running time will be 10 minutes.

Numerous test problems have been analyzed using the cone program, and

5 of these problems are discussed in Section 6 of this report. Most of the

problems are for the zeroth harmonic since these problems are more

amenable to theoretical analysis, but some discussion is included for a cone

with a first harmonic thermal Loading. The ogive program has been used to

compute the displacements w and v for the zeroth harmonic with constant

pressure Loading. These results are presented in graphicaL form and are

compared with theoretical results based upon membrane theory.
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2. FORMULATION OF THE ENERGY MATRIX AND LOADING VECTOR

For the cone and ogive, which are axisymmetric shells with aiJ = a 0

for i J. the free energy part of equation (1) can be written in the following

form:

aLL 0 va L~aZ2 -1111

22112

va22aL 0 a 2 2  2

"Za(L+v) (T'T°) L ",0,a22 I 12

Equation (2) is in dimensionless form with all physical dimensions scaled by

the length of the generator from the apex of the shell to the base mounting.

The above energy integral can be numerically evaluated in finite

difference form using two different methods. One approach is to expand

analytically the 'ij in terms of the displacements w, v and u and perform

the indicated matrix multiplications with the metrics. The integrand of the

energy becomes a complicated expression involving various powers of the

displacements and their derivatives. These mast be integrated in the y 2 and

y3 directions. The integration through the thickness can be carried out by

analytic procedures leaving only a single integral in they 2 direction. The

integrand of the final expression is expressed in finite difference form and the

integration replaced by a summation. This approach for the evaluation of the

free energy expression is used in the cone program where the final analytical
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expressions before introducing the rumination procedure are not too com-

plicated.

For the ogive, the expression to be integrated in the y2 direction was

found to be complicated and would require extensive programming effort.

By using a slightly different approach, a simpler programming procedure was

found. This method consists of expressing the ?Iij in finite difference form

and introducing them directly into equation (2) thereby eliminating the analytic

steps of the procedure used on the cone. The matrix multiplication is done

numerically and using a Gauss quadrature, the matrix is numerically

integrated through the thickness. Finally, the matrix is integrated in the y 2

direction. This procedure is specifically applied to the quadratic form in

equation (2); the linear form involving the temperature term3 is not complicated

and can be integrated analytically through the thickness as was done with the

cone.

After the numerical integration by either of the above methods, the

free energy and external work term can be written as:

1/2 X' AX = (W-T)X (3)

where X is the displacement vector with components w, v, and u at the various

mesh points along the generator, XAX is the quadratic form of the energy

expression and (W-T)X is the linear form of the work term W combined with

the linear form of the temperature terms T appearing in the free energy

expression. By taking the variation of equation (3), the following equation is
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obtained for the displacements:

AX =W-T (4)

where the matrix A is of symmetric positive definite form. For simplicity

in solving the simultaneous equations, the rows and columns of matrix A are

arranged so that all non-zero elements are contained in 15 diagonal rows.

With this arrangement of the matrix, the order of the components of the dis-

placement vector is:

Wl
Vl
u I

w iX= vi ()
Ui

Wn+ 1
Vn+ 1
un+ 1L

where n+l is the total number of points along the generator. The arrangement

of the X vector is the same in the cone and ogive program except for fictitious

elements which are placed before wI and after u,+in the ogive program. These

elements will be discussed in the latter part of this section.

a. Energy Expression and Grid Spacing for the Cone

Omitting the rather lengthy algebraic details, the free energy for

the cone can be written:
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FmT fSal 3h/ 2 dydz u~v sink -wcos

+zm(!1;;:coox k u)~) 2 -dy daw)

+ -dy- z -y + vsink -wcosk + z y sin k -y sn

dm(l)(A du A d ( mw-uCoxk

+ 2 A A dy udy \ y sin )

" (ll+v) [(T'T°)] (m~ +7 +m~sn -wc + zr~
yydW - odsw1

dy ) .j(6)

where Ay sin) - acoiX a

a)d Cm =1 zr co Xl/;m > o ; m =o

In many shell investigations, various approximations are introduced

into equation (6) to reduce the equation to a simpler form. For example,

Love's first approximation (see Reference 1) drops the z in the Aterms.

7
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Still other methods expand the A 1 terms as an infinite power series and from

order of magnitude studies, only certain terms in the series are retained.

For the digital program, however, there are no reasons for introducing

approximations into equation (6). As will be seen, the A- 1 terms at worst

introduce logarithmic terms upon integration through the thickness, and these

terms are certainly not difficult to evaluate in the digital program. Hence,

equation (6) is integrated assuming a uniform wall thickness and upon

rearrangement becomes:

VC at 3  dv dv
Fm 17J dy h I y sink +2vW(mu+ v sink -wcos k )+

dm(l-v) du2d y sin -2 (usinX +m +
2 L(dy4 dy +v]

e{(mu+ vsink -wcook )2+dm(1- v)(usink +mv)21 +

_"- ) coo k + y sin 2. w -ucos) OWL dw
L 7y L d dyz sink, d~j

+ d 2Il,- cook 2 ( n ' w u c o o X)
2 (dY ( y my siny -y y sino
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y Of) /y@nX

-(.- (-ok) 
w ymmdy,m____yycook) - sin)±l ytank.+ 2 - sink Lcy Li k y sink dy]

I -I
2

d_______s dw\M (m-u Coa x dw
m+m- ytank+2(u sink+ mv)( -rri-7- y y) dY~

- h (L+ T y sinkx+ mu + v sin X - w co) +

e = In

-h2{2(+v) ( dv cosx+ m(w- u coax) - sinXLW y s d )

3 d 2 w\ (2)
-Y h ca-) 

(7)
-1h (1+1) cook ;

where the logarithmic terms are

e I InL + cot x

L -- cot X

(8)

f - + ey tanx

coox
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and the temperature terms are in the integral form

T() h/2I
TM = 1 ci(T-T o ) Z/h dz (9)

The quantities T (0), T(1 ),and -#!which can be the results of a heat condition

analysis, are the necessary thermal inputs to the digital program and must

be specified at the mesh points along the generator. Since the coefficient of

linear expansion a appears under the integral sign in equation (9), the cone

program can be used for constant or temperature dependent a . Regarding

the elastic material properties, Young's modulus c has been assumed

constant and factored out of the integral in equation (7); it is not a required

input to the program but is used to scale the pressure inputs as shown in

equation (1). Poisson's ratio v, which is assumed constant, appears in

equation (7) and is a required input to the program. The other program inputs

are: a, the distance from the apex to the location at the truncation;

X , the serrm-angle; h, the thickness; and n, the number of spaces along the

generator between a and the base mounting. The number of mash spaces n can

be varied from 12 to 72 in increments of 12.

As shown in Figure 3 , the program does not assign a uniform -nesh

to the cone; rather, a uniformly fine mesh is used near the edges, and a

coarse mesh is used in the middle. The two edge areas with closely spaced

points will be called the boundary region while the area between the boundary
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region is called the membrane region. The program assigns n/3 spaces to

the membrane region and the remaining 2n/3 spaces are divided equally

between the two boundary regions. Further, the program assumes the

distance, 6, between stations in the membrane region is 4 times as large as

the spacing in the boundary region. This is sufficient information to com-

pletely establish the mesh points along the generator.

To express equation (7) in finite difference form, the formulas shown

in Appendix A were used. Note that special formulas were required at the

junction points between the membrane and boundary regions. For the matrix

of the quadratic form, the difference formulas are applied to the terms

multiplied by h3 /LZ in equation (7) and integrated over the mesh. This

results in an n x n matrix, which is added to a null matrix A,. Then the

terms multiplied by f, e, and h are evaluated in the same manner and are

added directly to the matrix AL as the computation proceeds.

b. Energy Expression and Grid Spacing for the Ogive.

For the ogive, the quadratic portion of the free energy expression

(equation 2) is numerically integrated in both the y 2 and y 3 directions. To

avoid some of the differencing problems which were manifest in the cone, the

Sij terms in the positive definite symmetric matrix ItI T1 are differenced

by first using a two-point forward first derivative and a three-point central

second derivative. The expression is then reformulated by replacing

all first derivatives by a two - point backward
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first derivative. For the uniform mesh the resulting quadratic forms are then

combined in the following manner:

~?1'1~= {'Tforward + jiT Ti backward 0i

where T s Ta 6
U

The energy term is then numerically integrated in the y3 direction

aby using a five-point Gauss quadrature; that is, at any given station yi ,

3 h

j= ai J(q) fi(qi)

J 3~ ~~ -- I lTi d(3)4 il l T1 (b-2)

where the qi are h/2 times the normalized five-point Gauss quadrature

coordinates, and the ai are h/2 times the normalized five-point Gauss

quadrature weighting factors. The grid spacing through the thickness of the

shell consists of the five mesh points whose positions are dictated by the Gauss

quadrature (see Appendix B). Note that since the normalized Young's modulus

and Poisson's ratio appear under the integral sign of equation (b-Z), the

program will permit the analysis of non-homogeneous but isotropic materials.

Specifically, the program has been written for v and a/t o varying through the

thickness (y 3 ) but uniform in the ya direction.

Integration in the y2 direction is then achieved by summing over all

stations along the generator. The mesh spacing along the y2 can be chosen by

the operator to be either a uniform mesh of n + I points along the entire length

of the shell or a non-uniform mesh representing a membrane region for the
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first two-thirds of the shell, and a boundary layer region for the remaining

one-third of the shell near the base. For the latter case the spacing of the

boundary layer region is taken to be one-fourth that of the membrane region

and the total number of spaces n must be divisible by three. Special

differencing formula must be used 'When at the juncture point and note, in

particular, that equation (b-I) will be replaced by

T I11juncture = a IIT forward+ b }backward W-3

where a and b are appropriate weighting factors.

In order that the forward and backward difference schemes may be

applied to all stations along the generator including the first and last point,

it has been necessary to create two fictitious points, number zero and n + 2.

These points are subsequently eliminated by defining their contributions as

w0  2w 1 - w., Wn 2 = 2W n 1 - w n

v 0 2v 1 - v2  Vn 2 = Zvn+i - Vn

u 0 - 2u1 - u2 , Un+2 - Zun1 - un

when no other boundary or closure conditions take precedence.

As has been already discussed, the program for the radome ogive is

in some respects more general than the program for the cone in that the shell

material need not be restricted to a homogeneous one, and the operator may

select either a completely uniform mesh or one representing the membrane and

boundary layer regions of the shell.

In addition to these options, the operator may also select, by proper

choice of sense switches, Love's first approximation to the ogive analysis.
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This approximation eliminates all z/R l and z/R terms in the formulation of the

problem (see Reference 1). Another option available to the operator permits

the solution of a non-truncated cone problem.
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3. BOUNDARY CONDITIONS

The energy formulation of the previous section results in a set of

simultaneous equations, and for n + I grid points along the generator, there

are 3(n + 1) equations for the w, v and u displacements. A special case is

the zeroth harmonic wher e by symmetry all the u displacements are zero.

The number of equations is then reduced to 2(n + 1). In the following

discussion, the general case will always be assumed.

The matrix A of the simultaneous equations is singular and the rank

is 3 n + 1. By physical reasoning, it can be seen that such must be the case

because the cone is free in space and an arbitrary rigid-body motion can be

added to the displacement vector. Hence, the displacement vector is not

unique. This condition is easily changed by specifying the base as a plane of

reference for the v and u displacements. Hence, the vn+l and un+l rows and

columns of the A matrix are eliminated. The displacement vector of

equation (5), which is specifically written for the cone, then becomes:

wi

V1

X W1 (5a)
Vi
ui

wn+ 1.
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For both the cone and ogive, the boundary constraints are imposed using

an energy technique; that is, the various boundary conditions are represented by

springs loading the edges and the strain energy of the springs is added into the

energy matrix for the shell. The various springs are shown in Figure 2

and the method of applying these springs will be demonstrated for the base

spring k1 . Specifically, the cone geometry will be considered in this

discussion unless indicated otherwise.

The numerical value of each spring constant determines the method of

modifying the A-matrix. lIthe spring constant is zero, the digital program

makes no modification to the A-matrix. For finite values of the spring, the

energy contribution is computed and added to the A-matrix. For example,

the energy contribution for kl is

2 d2

F(I)= k" -y si ) dy I con (mO)

- wCm y sin),(WI
I y z2= (10)

Or in finite difference form equation (10) becomes:

32
F (1) 16K LCm (Wn+ - 2

6 2  wn,vn u n wn +  0 00 vn

6 0 n 00 un (11)
-1 00 1 Wn+
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where KL= k L/I and 6 is the spacing of stations in the membrane region.

Hence, the matrix in equation (11) is added directly to the WnV , ,Wn+ I

elements of the A-matrix. If y is defined as the 4 x 4 matrix in equation (11),

the spring energy FM can be written as a partitioned matrix in terms of the

displacement vector X:

= 16KCmat 3  X 12)

62

Of course, before making an energy addition, any constants factored out of

matrix A must likewise be factored from the matrix F (' ) . In the cone program,

the factored constant is Cm El-v2

The above procedure applies to the other base spring constant K2 and

all the spring constants which are finite at the location of the cone truncation.

In Table I of Appendix C, the V matrices are given for each spring constant

Ki. Also given in this table are the definitions of the dimensionless K i and

the assumed form of the displacement vector.

In theory, the procedure of adding the energies F ( ') to the A-matrix

still applies, when the constraint becomes infinitely rigid; that is, K i -- * Co.

However, numerical difficulties occur when very large values of Ki are used.

In order to avoid the difficulties, special consideration is given to the

infinitely rigid constraints by using connection procedures. For example,

when K1 is to be considered infinitely rigid equation (10) implies:

dwl 0 . (13)
dy y= 1.0
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Or in finite difference form equation (13) becomes

Wn+l = w n  (14)

To impose the condition of equation (14), a connection matrix C which is a

rectangular matrix of size n+l by n is defined as follows:

x =cx (15)

where r Il
V1

1 0 u.1

0 Yc
(15a)

wn
Vn

Uln

and

Yc 0 
(15b)

1 0 0

The connection matrix C is used to eliminate from equation (3) the dis-

placement wn+l in terms of wn in the following manner:

1 X AX = (W-T)X (3)
2

Now by equation (15)

SX' (C'AC)X = (W-T)CX (16)2

and after taking the variation of equation (16)

(C'AC)X = WC-TC . (17)

A.,. TR .- 793



Equation (L7) expresses a set of simultaneous equations for w, v and u with the

required boundary constraint of equation (L4) imposed. The set of simultaneous

equations can be solved for X, and the desired displacement vector X obtained

from equation (15).

In Table II of Appendix C, the submatrices yc of the connection matrices

are given for the various combinations of the infinite constraints Ki. A s shown

in the table, only certain spring constants are associated with a specified value

of the harmonic number m. If m = 1, only K3 and/or K4 are pertinent to the

connection conditions at the truncation, and the program ignores the springs

Kj ; j = 5, 7. For certain combinations of rigid constraints, the implied con-

nection conditions are trivial such as u, = u2 =0 for K3 =K 4 = . Under such

circumstances, a connection matrix is not defined and the conditions are

imposed upon the matrix and forcing vector by eliminating the required rows

and columns.

As yet, no mention has been made of the closed cone boundary conditions,

and how they are imposed. The base springs K1 and K 2 are handled in the

usual manner. For the nose of the cone, special boundary conditions were

derived in Part A. These conditions are expressed as connection matrices for

the digital program and used in the manner already described. The connection

matrices are different for different harmonic numbers and are summarized in

Table III. As a passing parenthetical remark, notice that for m = 0, the

connection matrix for the closed cone in Table IlI is identical with the con-

nection matrix of Table II for K5 = K6 = c. This implies that the cone with a

clamped boundary and a very small truncation behaves like the closed cone.
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This is a coincidence, since the method of deriving the closed cone condition

was independent of the spring conditions. As shown in the tables for m > 0,

the closure condition does not correspond to any of the spring constraints.

In the cone program, all of the springs shown in Figure 2 , are

applicable to the analysis. However, the cone program requires K2 al-

ways to be infinite. For the ogive program, only springs K1 and K2 at the base

are applicable, since the shell is assumed to be closed at the nose. In

Appendix C, Tables IV and V sunu-arize the energy matrices y and connection

matrices Yc for the spring constants K1 and K2 , and Table VI shows the

closure matrices. Particular note should be taken of the closure matrices

which must not only impose the closure conditions on the elements of the first

few mesh points but also remove the fictitious elements wo , vo , and uo .

As mentioned in the previous section, the fictitious mesh points at the nose

and base were used as a convenience in differencing the energy expression.

To remove these points, the following relation is used:

fo = 2fl - fz (18)

where f can be w, v, or u. Equation (18) has been included in the closure

matrices. Likewise at the basethe fictitious point n+2 is removed by

in+2 = 2 fn+l - fn " (19)

Equation (19) has been included in the constraint matrices for K1 and K2 .
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4. SOLUTION OF THE LINEAR SIMULTANEOUS EQUATIONS

For the cone, the maximum number of simultaneous equations is 216,

while for the ogive the number of equations increases to 453. With systems

of this size, the method of solution mast be selected with care, if the com-

putational time and costs are to be within reason. Standard methods of

elimination for the solution of the simultaneous equations require approxi-

mately i 3 /3 operations where i is the number of equations and an operation

is considered to be a multiplication or division. Indeed, the computational

time would be prohibitive despite the high speed computers of today. For i=450,

approximately 5 hours would be required to carry out just the required

multiplications and divisions on the IBM 704. Obviously, solutions milst be

made using methods which take advantage of the convenient form of the

equations.

In Section 2, it was indicated that by properly arranging the rows and

columns of the A-matrix all non-zero elements can be located in 15 diagonal

rows. Such a matrix is in a convenient form for solution by the block tri-

diagonal method which permits skipping the operations on the zero elements.

The operation count for the solution is then approximately T ij where j

is the size of square submatrices to be defined subsequently. By taking the

ratio of the operation count of the block tri-diagonal method and the

standard elimination method, we find:

.2r =13 -2
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In the digital programs j=6 and for i=450, the number of operations is reduced

by a factor of roughly 430. Hence, to perform the required number of multi-

plications and divisions, the time is reduced from 5 hours to roughly

40 seconds. Besides the tremendous saving in computing time, the block tri-

diagonal method is very economical with regard to data storagebecause only

the non-zero elements of the matrix must be stored.

The block tri-diagonal method is defined by the A-matrix subdivided in

the following manner:

SAl Cl

LA AZ C
A2 C2AX (20)

Ck.l

S'Bk "Ak

where the Ak, Bk, and Ck are jxj submatrices which are sized to include all

non-zero elements of the A-matrix. There will be i/j rows or columns of

such blocks. The matrix is then factored in upper and lower triangular form:

A=LU

where

I Yl

B2  a? F
I, Y2

L= B3 Q3 and U= (21)
" " ' "Yk-

L'Bk akj
L ,.. '7
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Note that for the lower triangular matrix the first diagonal row below the main

diagonal is the same as in A. The other submatrices in L and U are readily

obtained.

a = Al

a= Ai Bi Y 1i i. , k (22)
-l

Yi = ai Ci i= 1, k-i

The system is then solved by defining:

LY = P (23)

where P is the original loading vector associated with A. Equation (23) is

solved by:

-I

Yi = C (Pi - BiYi) i = Z..k

Recognizing that

UX= Y

the final deflection vector X is obtained from the equations:

Xk- -k (25)

Xi = Yi "- Yi+l Yi+l i =k-1, k-2, ... I

As with all numerical mthods, certain conditions or properties of the

system must be satisfied if the block tri-diagonal method is to be used. The

critical operation in the block tri-diagonal method is the computation of -1l

The computation will fail if
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Am mentioned earlier, the A-matrix is symmnetric positive definite and am will

be shown, this is a sufficient condition to assure that aiis non-singular. The

proof follows from the fact that all diagonal minors of a positive definite matrix

are non-si ngularor if

Al C1

B2  A2  C2

then P) 1  0 0 for 1 1,2,- *k

But
C1= A1

Now, proceeding by induction assuming aj(j=l." i-1) exists, we compute tail

B 2

%,Bi (i '' -

Obviously lul i 0 and

IAWi = L Isll? ki- 1 VQI
lU
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Therefore

I~ CL

and a i is non-singular for all i.

When solving a large system of equations, the growth of round-off error

and inherent errors is a familiar difficulty and has provided the field on

numerical analysis with a bottomless problem which has absorbed tremendous

amounts of human effort. This error difficulty persists and has not been

resolved by large computers; rather, it has been reduced to a lower order of

magnitude by the use of double or triple precision operations. However, the

numerical analyst must always concern himself with the fact that some matrix

will be encountered that will cause unpermissible error in the result. Being

aware of these facts, a method of improving the solution was devised for the

digital program. The method consists of computing the first solution Xo and

using this to compute a residual R i , which in turn is used to obtain a

correction to the original solution. The procedure is repeated until a specified

number of significant figures is achieved in each component of the i-dimensional

solution. Symbolically the method is as follows:

X =A'lb

Ro = b - AXo

AX o  A-1Ro

X= Xo + AX 0
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or R. =b-Axj

AXi =A Ri

x i+i =Xi +4&xL
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5. EVALUATION OF STRESSES

The physical stresses are derived from the tensorial stresses by the

relation

a' ap = T a (26)

where the a's are metrics and

TaP 4 Ta p 6  
- a aa P (T-To.

L+ Y L-v

For the physicaL stresses of the cone, the foLlowing expressions are derived

from equation (Z

r",
0" cos me L r fnw-ucosx) dw.

mu + v sink - w cook + z y sin ay,
L- Vz  inX

+ dv d- a(L+ v) (T-To)1
-LJ

().l z  sinmO duy u mv + z d mw- Ucos)4 > m dw
2 (L+ v) dy y ysin X dy -y sin dy

Y y sini dy

z - + mu + vsin -wcosk

Iy dyZ y sin X

+ z -mw sink - (i+ v) (T-To)
(2y sin X dy/

(27)
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At each mesh point along the generator, the stresses of equation (27)

are evaluated at the outside surface, the mid-plane, and the inside surface

(z = -h/2, 0, h/2). In order to evaluate the stress at a particular point,

the product of the temperature difference and a must be provided as an input.

An exception for which the program does not require any temperature inputs

is the isothermal case with pressure loading. The stresses are also functions

of the displacements, which are obtained from the solution of the simultaneous

equations, and the derivatives of the displacements which are computed by

finite difference techniques. It should be recalled that the cone has two

boundary regions and membrane region. The computation of the derivatives

at junction points between these regions requires special consideration.

For the first derivatives a standard 3-point centered difference formula

is used for all internal points removed from the boundaries and the junction

points. At the edges of the cone, a 3-point backward or forward differencing

formula is used to compute the first derivative. The forward difference

would be used at the left edge, and the backward difference at the right edge

or base. To compute the first derivatives at the junction points of the two

regions, a 3-point forward or backward difference formula is again used and

the computation is always based upon data in the fine mesh region.

The second derivatives are computed in a manner similar to the first

derivatives. A 3-point centered difference formula for the second derivative

is used at all points removed from the edges or junction points. A 4-point

forward or backward differencing formula is used at the edges and junctions
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with the computation based on data from the fine mesh region.

The physical stresses for the ogive are given by:

_ cosme L _-_ z M2z W

0", z
rn +om a _ usinp( Zv . osP- Rosinp

go o -v 2  RCOS R) C I ]

+ w + ,_Q (l+v) (T-T)1

S o mM sin _ )w a w

O" z csnmO yO~ sin 2 uzw + t-.

o - i o I- V' [L- RRcoo nyj

+ ( w L 2w C + v) (T - .

RL J By a

-zs
The sin mie dcospo sinr - ei aiew + -h ! + mz rw

E 0  o (ii~ LosR ~ R~cosW H 8 R csp By

+__ m ssinu L ;;- zw + mz O
+RIcosp[ Ri~ sRgu R~cosp

The finite difference formulas for the derivatives in the above expressiont

are the same as for the cone program. The stresses themselves are calculated

at the mid-pLane and outer and inner surfaces and require values of Poisson's

ratio and a normalized Young's modulus at these points.
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6. NUMERICAL RESULTS

Numerous problems have been analyzed using the digital programs, and

for problems which have a theoretical solution the analytical and numerical

results have been compared. Theoretical results are available for comparison

with several interesting cases for te zeroth harmonic with pressure or thermal

loading. Five of these cases are discussed in this section. For harmonic

numbers greater than zero, the number of theoretical solutions are limited

and in this report only one problem with m = 1 is discussed.

For the cone, the following problems are discussed:

Problem
No. m x a Loading

1 0 . 1489 - Closed cone - constant temperature increase

2 0 .1489 . 1 Truncated cone - constant pressure

3 0 . 1489 . 1 Truncated cone - constant temperature increase

4 0 .4636 1 Truncated cone - Linear temperature along (L

5 1 .6435 . 1 Truncated cone - Linear temperature along

diamete r

In all of the above problems, the (non-dimensional) wall thickness and Poisson's

ratio are assumed constant and equal to 0. 00206 and 0. 25, respectively.

Furthermore, only the results with 72 spaces along the generator are con-

sidered.

Problem 1 is the analysis of a closed cone uniformly heated with a

temperature change of 1000 0 F. The base is assumed to have no edge moment

but edge shear prevents any radial growth. This is equivalent to K1 = 0 and
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K2  c oo. As shown in Figure 4, the deflections w and v are smoothly varying

curves over the 73 mesh points. The abscissa has been labled with two scales.

The upper scale indicates the y distance along the generator while the lower

scale indicates the mesh point number. The first mesh point is located at

y = . 0069 which is slightly larger than the distance to the inside apex. The

first boundary region ends at station 25 and the second boundary region starts

at station 49. The membrane region between stations 25 and 49 has a mesh

spacing of 6 , where 6 . 0276. As mentioned in Section 2, the points in the

boundary regions have a uniform spacing of 6/4.

If the base of the cone is completely unrestrained, the closed cone with

uniform heating is theoretically in a zero-stress state. Further, the dis-

placements are found to be:

w = - aT tanX = - .15001024 x 102
3 (29)

vz -T (L-y)= -10 x L - 3 (L-y)

where a = 10 - 5 , the value used in the digital program. The numerical results

from the program agree well with the theoretical values from equation (29),

for all values of y away from the base region. The maximum error was found

to be 3 parts in 1500 or 0.2%. In the vicinity of the base mounting. the

theoretical solution is not applicable because the base is assumed to be free

whereas in problem I the base has some constraint. The numerical solution

with the damped oscillations in w is typical of the edge phenomenon of shells.

Also shown in Figure 4 is the stress 0f"' along the generator. The

stress is in dimensionless form and must be multiplied by Young's
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moduLus a to obtain the physicaL stress. The stress, like the w displacement,

has a damped oscillatory character in the vicinity of the base, and away from

the base the stress varies from 30 to 300 psi for a =30 x 10 . In theory,

the stress should become zero away from the base. In the immediate

proximity of the nose, the stress has not been plotted because the structure

violates the shell assumptions and behaves like a 3-dimenbional body.

The mid-plane stress (T11 and the stresses oil the mid-plane are

similar in nature to ; that is, the stresses are large in the vicinity of

the base and become small in the membrane region. These stresses are

found to be in good agreement with theory.

For problem 2, the cone has a 10% truncation and a uniform pressure

Loading. The base boundary conditions are K I = 0 and K 2= c,while at the

location of the truncation no constraint is imposed; that is, K S = K 6 = K 7 = 0.

The deflections w and v for problem 2 are plotted in Figure 5 as the solid

curves. The circled points represent the theoretical solution to the same

problem based upon the following equations from membrane theory:

p tan~) [3 I a 1
w= - h t -a" + v(az -l) +-L + a' In

2 h L2 2 Y
______- (30)

V = -p tank X (yz 2 ) + az In .
a 2h "Y

For the same problem, the mid-plane stresses 0211 and 0"2 are

plotted in Figure 6,and the stresses T"I and 0T,2 (z : - h/2 ) are plotted

in Figure 7. Again the circled points are the results of analytical

calculations for selected points along the generator. The agreement is seen
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to be good. For the str-eeses T311 and 0 322 which have not been plotted, the

numerical and analytical results were found to be in good agreement.

In Appendix D, the complete set of inputs and outputs is shown for

problem 2. Also included in Appendix D is the program outputs for problem 3.

Both these problems have the same cone geometry but different loads and

boundary conditions.

In problem 3, the truncated cone is analyzed for a uniform increase of

temperature. At the base K, = 0 and K 2 = uo, while at the truncation the edge

is assumed to have no radial growth or change of slope. This corresponds to

K 5 = K6 = co. In Figure 8 , the displacements w and v are shown,and the edge

phenomenon is again noted. In the m.imbrane region, the theoretical dis-

placements are computed using equation (29) and the error in w found to be

roughly 3 parts in 1500. Theoretically, the stresses should be zero in the

membrane region and, as shown by the tabulation in Appendix D, the computed

stresses are small, varying from 30 to 300 psi for e = 30 x 106. The agree-

ment is considered satisfactory.

In problem 4, a truncated cone is thermally loaded with a temperature

distribution which is linear along the axis of the cone. I the edges of the cone

are free from constraints, the theoretical displacements are found to be:

w =-T aTtan (L . y2

2
(3L)

v -T -A /y •
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Furthermore, the cone is found to be in a zero state of stress.

The displacements w and v from the digital program are shown in

Figure 9 . The circLed points are obtained from equation (31), and ate seen

to agree well with the numerical results from the program. The stresses at

the mid-plane and off the mid-plane were found to be small and in satisfactory

agreement with the theoretical zero state of stress.

The last example to be considered for the cone is problem 5 where the

first harmonic of the loading is used. The loading is a linear temperature

distribution along a diameter of the cone. The cone is free at the truncation

and constrained from radial growth at the base (K2 = co). Because of these

boundary conditions, it is not possible to obtain an analytical solution which

can be compared with the w, v and u displacements shown in Figure 1O .

However, the stresses in the membrane region should be zero or at least

small. The stresses from the digital program varied from 30 to 300 psi

( E = 30 x 106) in the membrane region and are considered to be in satisfactory

agreement with theory.

One of the first problems analyzed with the ogive program was

that of a uniform pressure loading on a shell with free edge constraints.

A uniform m.sh having 73 points was selected. The following table summarizes

the inputs to the problem; note that all lengths have been scaled by the length

of the generator:
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Po x .25 radian i=1 f .25for all z

R z 4.0 *(z) /oi 1.0forall z

h = .00125 p/ o  = .25 x 10- 5

m = 0 KI=K 2 = 0

The resulting deflections are shown in Figure L 1. As a comparison the

membrane solution

4 h cot4- sin + [oti cac + In (cot4/Z)]

+ 2sinz ~ot +csc+ Zcot si]}si.+

W = v cot+ - (p/t d R a 1
h L 2  8J

sin+- sin 0

sin, +2

has been calculated for several values of 4 and as seen in the graph, the

agreement is good. It is to be particularly noted that the maximum v and

minimum w do not occur at the extremity of the nose, but are located at about

station number 4. This phenomenon is predicted by theory. The ogive

program has not been used to compute stresses since that part of the program

is undergoing modification. Stress results will be described in subsequent

scientific reports.
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7. CONCLUSIONS

The digital programs enable the design engineer to make detailed

investigations of the structural requirements for ogival and conical radomes

under thermal and/or pressure loading. The programs can be used to analyze

the radome for any flight mission, provided the required thermal and pressure

loading is known. For a defined load, the program provides the design

engineer with (1) the displacement s w, v, and u at the mid- surface of the

shell, and (2) the normal and shear stress at z = -h/2, 0, and h/2. This

information is given for n + 1 points along the generator.

Besides investigating various loading conditions, the programs can be

used to investigate different methods of mounting the radome. In the cone

program, no radial growth at the base is allowed, but any degree of edge

moment constraint can be specified (K1 = 0, finite or o and K2 = co). At

the truncation of the cone, any arbitrary constraint can be imposed by

specifying the proper combination of spring constants. In all, there are 5

springs at the truncation, each of which can be specified as zero, finite or

infinite. Hence, a conical radome with a nose boom can be investigated for

various amounts of flexibility in the boom. In addition, the cone program

can be used for the analysis of the closed nose structure. The ogive

program has been constructed for the closed nose condition only. At the

base of the ogive, completely general constraints are permitted; that is,

both K1 and K2 can be zero, finite or infinite.
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All of the numerical results discussed in Section 6 are for the spring

constants zero or infinite. Problems with finite springs at the edges are

omitted since suitable analytical solutions are not available for comparison

purposes. However, the programs have been used to analyze systems with

finite springs, and as the value of the spring constants was varied from zero

to larger and larger values, the results were observed to change in a

consistent manner from the zero constraint case to the infinitely rigid case.

The numerical results indicate that the digital program for the cone

accurately computes the displacements and stresses for pressure and/or

thermal loading. Any discrepancies between the numerical and theoretical

results are indeed small and well within the requirements of the design

engineer. Similar remarks are applicable to the ogive program regarding

the displacements.

It is concluded that the combination of the above cone and ogive programs

make possible a detailed examination of any conical or ogival radome for

all nose and base boundary conditions, material properties and load dis-

tributions of practical interest.
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APPENDIX A

FINITE DIFFERENCE FORMULAS FOR THE CONE PROGRAM

The free energy expression as shown by equation (7) involves zeroth,

first, and second derivatives of the displacements and products thereof. For

all of the terms not involving a second derivative, the following difference

approximations are used:

r2 d ri+r i 2 6. --
Jr dy=Z I116

1 2

42 N 2 1g(r )dy (2ri+1 -ri)* 6

N
r's'dy - -(ri+l-riLlsi+l-si} •

r dy = ri+l+ri}(si+-si)

where 6i is the spacing of the stations at the ith mesh point, r and s are any

of the displacement w, v, or u, and N is the number of spaces along the

generator. The above formulas apply without any modification to a uniform or

variable mesh size.

For terms involving the second derivative of a displacement, special

consideration must be given to the junction points between the membrane and

boundary regions. Let the junction points be called NI and NZ for the left and

right boundary regions, respectively. The finite difference forms are then
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written as:

a b
r si t) d ' ( + L -2 i + Si-i + 8 L I.+ N +)

5 i NNZ NI-V5NNZ NI+I

ay u2 6? 262 rLL N L LC@LBL

L

+ ( 4 rNZ+L -
3 N2 rNL-[ (ONZ-I - '5 8NZ+ N2i

where a and b have the foLLowing vaLue. for the various regions

Left boundary region a =2 ; b = NI-I

membrane region a =NL+I; b NZ-I

right boundary region a =N2+L b = N
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APPENDIX B

FIVE-POINT GAUSS QUADRATURE COORDINATES AND WEIGHTS

q, = .906179846 a, = .236926885

=2 = .538469310 a2  .478628670

q3 = 0 a3 =.5688888,89

q 4 = . 538469310 a 4 = .478628670

q= .906179846 a. = .236926885
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APPENDIX C
TABLEI

Energy Contribution from t2he Boundaries of the Cone

Ki 4i  -yi (mS 1) Yi (m 1)

k 16(l-!3sin 100 -1 w n

i 620 sameas m>

k2 (1 n same as m >
KZ=- 1-)smnco X] [wn) <

k3

K3 =7 (1-v)/w none (13 {lul

00000 w 11<k 61 0 0 0 0 0 0 Vi
K4  16(14) none 0 0 1 0 0 -1 u1

K 4 a w 6 2CO112 x 00 0 00 0 W

0 0 0 0 0 0 V2

0 0-1 00 1 2

k 2 FO o o" 0 V
k5  16(1,-v)a 0 0 0 0 00 U1  none

K-5  a 2  6z o x  1 0 0 0 0 0 0 w 2

0 0 0 00 0 0 2
0 0 0 0 0 L __

.. 1co02X -s 5,z2 X w
6  (1-y2)a sin X i "one

s _-_ink cook sink vL}

k (1-A sink sink cook nonK7 21V v none
K2w- I ILsinkcoaX -°A Lv

Note: F(ll = Cm 13  Yj
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TABL! II
Connection Conditions Y for Various Combinations of

Infinite Spring Constants for the Cone

i iSpring Combination Y c n>1) yi (m = 1)

1 0 0u n I

K 0 1 0 fwn same as m 10 0 1 vn
1 0 0O _un .

K2. Wn+ 1 = 0[ Wn+ 1 =2 0

KI and K2  wn= Wn+ = 0 wn = Wn+1 = 0

K3  none uI = 0

0 1 0 0 0 | vI10 0 0 0 1  w
K1  none 0v 2

0 0 0 1 0 u2

K3 and K4  none Ul = u 2 0
___".....__________ - 4 -.------ -- .

0 0 0 vu

__ __ __0_ 1__O___w_______ none
1a 0 0 Vl

KS 1 0 W2 U i noneJJ
t6 1 ] T i_ none

K5 and K6  0[cot jwJ none

0 1 817
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TABLE II (Continued)

Spring Combination yc (m 1 1) ¢

K~nK7 j -_cot___ .-I ::..
6 a K7  c x vnone

w2

L V2

0 1 u1
K5adK tan X. w2  none

0 1 u

K 6 and K 7  wI = vI = 0 none

K5 , K6 and K7  w 1 v 1 =w 2  none
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TABLE MII

Nose Closure Matrices for Cone

YC (m=0) YC (m- c (m >1)

0 1 U, (1-qa 0 q cos>. w =v 1 u= 0
0 c xtan)k 0 - cack u?

u2,U 1 0 0s) w 3

0 1 0J L 0 01

6
where q = and yz y at station 2.

4 Yz sn 8
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TABLE IV

Energy Matrices for the Base Connection Springs

Moment Spring, modulus K1

r
L 0 0 u4 L 0 0 0 0 wn

"=6T F R6
0 0 0 0 0 0 0 0 0 vn

0 0 0 0 0 0 0 0 0 un

1 0 0 1 0 0 1 0 0 Wn+l

KL 1 0 0 0 L 0 1 0 0 Vn 1
I +" 2RI 2R6 V+

0 0 0 0 0 0 0 0 0

0 0 0 .. L 260 6 0 0.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Un+Z

Radial Growth Spring, modulus K2

Fcos IOn+ L = sin~n+ LCOn+L 0 0 0 0 Wn+1

sinn Ph+ cve Ln+ L 0 0 0 7 vn+7

21 ( R Ki 0 0 0 0 0 0 Un+1z ,.n(f/,,o) R t:co s n+I 2-.
000 0 0 0 Wn+ 7

0 0 0 0 0 0 Vn+,

0 0 0 0 0 0 un+2

These are for m >' 1. When m = 0 delete rows and columns numbered

3, 6, 9 in the first matrix and rows and columns numbered 3 and 6 in the

second matrix.
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TABLE V

Base Connection for the Radome Olive

Spring Combination (m 0) (m 1

K1 Finite, 0 0 1 w 10 0 1 0 un
K2 Finite 0 0 0 00 0 1 wn~

1 02 0 00 0 L
L0 -10O 0 0 00

0 -1 0 0

L0 0 -1 0J

1 0 0 wn1 0 0 0 w
0 1 0 vn0 1 0 0 V

K2 Finite 0 0 0 L0 0 0 1 w+iI
1~niie 0 1 0 0 1 0 U

0-1 0 00

o -1 0 0
L0 0 -1 0

r
1 0 n1 00-w

K~niie0 0 10
K1 Finite, 0 0 0 0 1

KIniie000 0 0J
-1 0 0 0 0

L0 -1 00 0
-1 0 0
0 -1 0

L0 0 -.1

1 0 n1 0 0

Ki Infinite, 0 0 0 0 1
K2 Infinite 0 0 0 0 0

1 0 00 0
0 -1 00 0

1 00
0 -1 0

L0 0 -1
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TABLE VI

Nose Closure for the Radome Ogive

For m 0:

26
i 1 0 V

2 0 -1 w2
tan PL 0 0 V2

i 0 0
0 1 0"

0 0 1

Form > 1:

1 0 0 w2
0 0 1
0 o 0
0 0 0

0 0 0
1 0 0
0 1 0

0 0 1

Form= 1:

26- 6 - 26 sin PL 1 0 01 Vi

R (RLcos2j)L (RLcos 3 )L

2 0 0 -1 0 u

-26 - 26 sinL 0 0 1
(RLcOs P)L (RLcOOP)L w

tan PL sec 0 0 0 v2

L 0 0 0 0 U2

0 L 0 0 0

0 0 1 0 0 L

0 0 0 1 0

0 0 0 0 1
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APPENDIX D

DIGITAL PROGR.AM OUTPUTS FOR PiOBLEMS 2 AND 3

GA5L 0c) 2 6
-00 0 

F'RB 2 9,'4,59
1 7

INPUT

CLASS 8 til72 HPPMIOICX 0. ANGS 0.148'-E-00 A$ 1.0000E-01 THICK. 0.2060E-02 NUt 0.2500E-00

SPRING CONS

0. 0. O, . 0. 0. 0.90E 04

PRESSURE

0. 2500E-05
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OUTPUTS MISSILE AT LOCATION 0. TIMED 0.

1 0.1001 O.33746448E-05 O. 20692991E-04
2 0.1062 0.34119216E-05 0.20716776E-0.
3 0.1125 0.34475228E-05 0.20739736E-04
4 0.1187 0.34843457E-05 0.20756079E-04
5 0.1250 0.35225319E-05 0.20768109E-04
6 0. 1312 0. 35620049E-05 0. 20776083E-0',
7 0.1375 0.36027664E-05 0.20780215E-04
8 0. 1437 0.364484 35E-05 0. 20780685E-04

9 0.1500 0.36882617E-05 0.20777655E-04
10 0.1562 0.37330427E-05 0.20771266E-04
11 0.1625 0.37792049E-05 0.20761642E-0.
12 0.1687 0.38267649E-05 0.2074,6891E-04
13 0.1750 0.38757375E-05 O.20733114E-0.4
14 0.1812 1. 39ZI 1360E-u5 0. 2071,4395E-0.
15 0.1875 0.39779721E-05 O.2'J692816E-04
16 0.1937 0.40312561E-O5 0.20668448E-04
17 0.2000 0. 4089975E-05 0. 2064) 353E-04
18 0.2062 0.41422040E-1:15 0.20611590E-04
19 0.2125 0.41998876E-05 0.20579214E-04
20 0.2187 0.42590712E-05 0.0544271E-04
21 0.2250 0.'43197P.82E-05 0.20506810E-04

22 0.2312 0.4 20152E-05 O.2046870E-04
23 0.2375 0.444546- 03E-05 O.2042,4 R4E-04
24 0.2437 0. 450- 253E-05 0. 20 3796,:0E-04
25 0.2500 .45729S593E-05 . 2- 0332367F-04
26 0.2750 0.48600 10E-05 0.20121856E-0-,
27 0.3000 0.516,72'50E-05 0.19875611E-04
28 0. 3250 0. 54979076E-05 0. 19594456E-04
29 0.3500 0.5353,727E-05 0.19279341E-04
30 0. 3750 0.6?47294E-05 0. 1 :931 02E-04
31 0.4000 0.66405 84E-05 0. 18550131 E-0'
32 0.4250 0. 7071 +,6 4E-C!5 ". 1I81 7150E-04
33 0.4500 0.752748'25E-1 1 . 176 2503E-0.
34 0.4750 0. 800 718 E-115 J. 1721, .5 36F-0
35 0.5000 0.85150774E-05 i'. I C ?09545E-04
36 0.525 0. :"0467366E-05 0. 1 1 71 7E-04
37 0.5500 0. 960 .16823E- .0 19, 0"'. 3E -04
38 0.575. O. 101 '9.E-"'. 0. 151 0.-,n -04
39 0.6000 0 . 1 070'3.4 1 E-04 0.1 3758I 1 3 E -04
40 0 629c0 0. 1 1 42,E501E-0 4 1 71,:'2 'E -04
41 0. 6500 0. 1 209'4. 4fOE-t4 0. 1 ;,028041E-04
42 0.6750 0. 12766576E--,4 0. 1-, 09 31E -04
43 0. 700u 0.13477723E-04 .I. 1 151t. 1)i)E -04
44 0.7250 0. 14 2122,14E-04 0. 1"78'2::3E -0-
45 0.7500 0.14972302E-04 0. 975 218 6E-05
'4G 0.7750 0. 1 57!7743E-:4. ''. :,1 -12 ,:
47 0. 6:000 0. 1 ,.308-04 7111 2E-05
48 0.8250i O. 17405 I 14E-'" C. 7 , 3E-051
49 0.8500 0. 1 1 -76 I5-.5-':.. . 5' 55 3E-05

50 5 0.85u; 0. 18- '41 '- - '. 'E 1 E - F
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OUTPUTS MIISSILE AT LOCATICN 0. TIMEI 0.

POE Y iii

51 0.862! O.18710462E-04 0.59771924E-05
52 0.8687 0.l SL'1338E-0. 0.57375699E-05
53 0. 87!0 0.1915498E-0 4 0.5496105SE-05
54 0.8812 0.19380871E-04 0.52528153E-05
55 0.8875 0. 19608109E-04 0.50077005E-05
56 0.8937 0. 19835470E-04 O.47607522E-05
57 0. 900) 0.2006 14 16E-4 C'. 45119458E-05
58 0.9062 0.20284466E-04 0.423l2404E-05
59 0?9125 0. 2050421 0E-04 0. .0085861E-05
60 0. '1187 0. 20723260E-.-4 0, 3753.'.i66E-05
61 0. 9250 0. 20g9901E-04 0. 34173493E-05
62 0.9312 0.21 202806E-04 0.32389658E-05
63 0.9375 0.21Il0112E-0* 0. 29792183E-05
64 0.8457 0.2190 1nE-04 0.271 88-E-05
65 0.9500 0.224?1'578-O4 0.2f590421E-05

66 0.9562 0.2-3070183E-04 0.2200931E-05
67 0.9625 :'. 237294 OE-04 0. 1 -*51 722E-05
68 0.9687 0.241 4!g27E-04 0.16904507E-05
69 0.9790 0.23814484E-04 G. 1 14 28E-05

70 0.9812 0.21612-6E-(,- 0. 11563816E-05
71 0.9875 0. 17657584E-0 0.84490962E-06
72 0.9937 0. 1021259 3E-0 0. 46903087E-0',
73 1.0000 0. 0.
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OUTPUTS MISSILE AT LOCATION 0. TIMES 0.

POS Y SIGMA-11,1 SIGMA-I,2 SIGMA-II.3 SIGMA-22,! SIGMA-22,2 SIGMA-22,3

1 0.1000 -0.16791730E-04 -0.18030007E-04 -0.19456062-04 0.19311907E-06 0.41193440E-0 -0.23171105E-062 0.1062 -0.18084501E-04 -0.19340359E-04 -0.20771372E-04 -0.82571720E-06 -0.10955022E-05 -0.14090763E-05
3 0.1125 -0.19200213E-04 -0.20463409E-04 -0.21889702E-04 -0.17836806E-05 0.21316909E-05 -0.25204760E-05
4 0.1187 -0.20339691E-04 -0.21593119E-04 -0.22999214E-04 -0.27791499E-05 -0.31284539E-05 -0.35159244E-05
5 0.1250 -0.21487043E-04 -0.22731265E-04 -0.24119069E-04 -0.37374125E-05 -0.40823968E-05 -0.44632766E-05
6 0.1312 -0.22633800E-04 -0.238,70723E-04 -0.25243206E-04 -0.46560609E-05 -0.49992690E-05 -0.53763673E-057 0.1375 -0.23779085E-04 -0.25009918E-04 -0.26369166E-04 -0.55419897E-05 -0.58843888E-05 -0.62588915E-05
8 0.1437 -0.24923291E-04 -0.26148878E-04 -0.2749647)E-04 -0.64001885E-05 -0.67419467E-05 -0.71142067E-05
9 0.1500 -0.26066673E-04 -0.27287702E-04 -0.28624961E-04 -0.72342346E-05 -0.75754239E-05 -0.7945670!E-05

10 0.1562 -0.27209377E-04 -0.28426433E-04 -0.29754475E-04 -0.80470191E-05 -0.83877041E-05 -0.87561360E-051) 0.1625 -0.28351505E-04 -0.29565082E-04 -0.30894373E-04 -0.88410129E-05 -0.91S12654E-05 -0.95480711E-05
12 0.1687 -0.29493139E-04 -0.30703660E-04 -0.32016026E-04 -0.26182880E-05 -0.99581645E-05 -0.10323502E-04
13 0.1750 -0.30634341E-04 -0.31842171E-04 -0....173312-04 -0.1039OS29E-04 -0.10720186E-04 -0.11084200E-0414 0.1812 -0.31775197E-04 -0.32980643E-04 -0.34280220E-04 -0.11129633E-04 -0.11468901E-04 -0.11831701E-04
15 0.1875 -0.32915725E-04 -0.34119057E-04 -0.35413093E-04 -0.11866583E-04 -0.12205596E-04 -0.12567286E-04
16 0. 1937 -0.3405596SE-04 -0.35257421E-04 -0.36546403E-04 -0.12592667E-04 -0.12931456E-04 -0.13292127E-04
17 0.2000 -0.35195957E-04 -0.36395729E-04 -0.37680075E-04 -0.13308939E-04 -0.13647515E-04 -0.14007234E-04
18 0.2062 -0.36335652E-0 -0.37533955E-04 -0.38814075E-04 -0.14016116E-04 -0.14354641E-04 -0.14713620E-04
19 0.2125 -0.37475145E-04 -0.38672221E-04 -0.39948536E-04 -0.1*714771E-04 -0.15053591E-04 -0.15412222E-04
20 0.2187 -0.38614919E-04 -0.39811005E-04 -0.41083912E-04 -0.15405632E-04 -0.15745086E-04 -0.16103746E-04
21 0.2250 -0.397562)4E-04 -0.40951076E-04 - -0.42220492E-04 -0.16091334E-04 -0.16429863E-04 -0.16787031E-04
22 0.2312 -0.40899701E-04 -0.42091573E-04 -0.43355864E-04 -0.16778793E-04 -0. 17108871E-04 -0.17457064E-04
23 0.2375 -0.42039051E-04 -0.4322%227E-04 -0.44479796E-04 -0.17475553E-04 -0.17782918E-04 -0.18107880E-04
24 0.2437 -0.43148762E-04 -0.44327519E-04 -0.45574704E-04 -0.18162712E-04 -0.1845314E-04 -0.18757024E-04
25 0.2500 -0.44214238E-04 -0.45385437E-04 -0.46623136E-04 -0.18841048E-04 -0.19110606E-04 -0.19396789E404
26 0.2750 -0.48865071E-04 -0.50052566E-04 -0.51300437E-04 -0.21319054E-04 -0.21648265E-04 -0.21992570E-04
27 0.3000 -0.53417975E-04 -0.54606122E-04 -0. 55849425E-04 -0.23862156E-04 -0.24199549E-04 -0.24550732E-04
28 0.3250 -0.57970725E-04 -0.59157979E-04 -0.60396013E-04 -0.26377229E-04 -0.26714884E-04 -0.27065234E-04
29 0.3500 -0.62523217E-04 -0.63709894E-04 -0.64943627E-04 -0.28859323E-04 -0.29196014E-04 -0.29545468E-04
30 0.3750 -0.67075353E-04 -0.6826173JE-04 -0.69491953E-04 -0.31311869E-04 -0.31649634E-04 -0.31998361E-04
31 0.4000 -0.71627212E-04 -0.72813489E-0U4 -0.740401'E-04 -0.33743070E-04 -0.34080935E-04 -0.34429063E-04
32 0.4250 -0.76178863E-0f. -0.77365191E-04 -0.7859011GE-04 -0.36155882E-04 -0.36493862E-04 -0.36841492E-04
33 0.4500 -0.80730353E-04 -0.81916845E-04 -0.83139764E-04 -0.3855338E-04 -0.38891495E-04 -0.39238708E-04
34 0.4750 -0.85281717E-04 -0.86468461E-04 -0.876806'3E-04 -0.40938019E-04 -0.41276261E-04 -0.41623124E-04
35 0.5000 -0.89e32979E-04 -0.91020044E-0.. -0. 92239356E-04 -0. 43311703E-04 -0.43650087E-04 -0.43996658E-04
36 0.5250 -0.94384153E-1,14 -0.95571591E-04 -0.96790206E-04 -0.456760)10E-04 -0.46014541E-04 -0.46360867E-04
37 0.5500 -0.98935264E-04 -0.0012311E-03 -0.101340722-03 -0.48032235E-04 -0.48370916E-04 -0.48717035E-04
38 0.5750 -0.103631-0 -0.104 2~-03 -0. 10589133E-03 -0.50381425E-04 -0.50720260E-04 -0.51066208E-04
39 0.6000 -0.10803733E-03 -0.10922(11E-03 -0.l110.21 IE-03 -0.52724463E-04 -0.53063451E-04 -0.53409255E-04
40 0.6250 -0.11256830E-03 -0.11-377758E-03 -0. 1499303X-03 -0.55062087E-04 -0.55401231E-04 -0.55746918E-04
41 0.6500 -0.11713924E-03 -0.1183203E-03 -0. 9543 E-03 -0.57394920E-04 -0.57734220E-04 -0.58079813E-04
42 0.6750 -0.12169015E-03 -0. 2288047E-03 -0. 12409503E-03 -0.59723502E-04 -0.60062960E-04 -0.60408475E-04
43 0.7000 -0.12C24104E-03 -0.12743191E-03 -0.2%64G14E-03 -0.6248291E-04 -0.62367905E-04 -0.62733363E-04
44 0.7250 -0.13079192E-03 -0.13)18332-013 -0.1!3197SUE-03 -0.643-z675E-0* -0.64709445E-04 -0.65054958E-04
45 0.7500 -0.133427SE-03 -0. 13653474E-03 -0.1 774#32E-03 -0.66638026E-04 -0.67027929E-04 -0.67373287E-04
46 0.7750 -0. 139893502-y -0. 1108w 0E-03 -0. 142279(4E-03 -0.6003f629E-0 -0.693436502-04 -0.69688951E-04
47 0.8000 -0.14444-32E-03 -0.I15,3684E-03 -0.1466033E-03 -0.71314330E-04 -0.71656296E-04 -0.72003377E-04
48 0.8250 -0. 14899776E-03 -0. 1501 ..66E-03 -0-1514112E-03 -0.73A09895E-04 -0.73963773E-04 -0./4322614E-04
49 0.8500 -0.1536281IE-03 -0.154Z"'173Z-03 -0. 1560 30I2E-03 -0.75971562E-04 -0.76299172E-04 -0.76631602E-04
50 0.8562 -0.15473319E-03 -0.15593071E-03 -0. 1571,4737E-03 -0. 7,,524362E-0, -0.76875956E-04 -0.77232334E-04

WMDD TN 59-22 z6



OUTPUTS MISSILE AT LOCATIOM 0. TIME$ 0.

POS v SIGMA-1111 SIGMA-11.2 SIGMA-11,3 SGMA-22,1 SIGMA-22,2 SIGMA-22,3

51 0.8625 -0.15584165E-03 -0.15704911E-03 -0.15826757E-02 -0.77076964E-04 -0.77452551E-04 -0.77832887E-04
52 0.8687 -0.15696640E-03 -0.1581694i E-03 -0.15?30139E-03 -0.77655396E-04 -0.780292932-04 -0.7C407896E-04
53 0.8750 -0.15810367E-03 -0.15930305E-03 -0.1605211CE-03 -0.78247329E-04 -0.78606053E-04 -0.76969458E-04
54 0.8812 -0.15924823E-03 -0.1',044158E-03 -0.16165352E-03 -0.78848784E-04 -0.79182823E-04 -0.79521510E-04
55 0.8875 -0. 16039350E-03 -0.16157833E-03 -0. 16272163E-03 -0.7946015E-04 -0. 79759632E-04 -0.80063729E-04
56 0.8937 -0.16153012E-03 -0.16270417E-03 -0.16389656E-03 -0.80080215E-04 -0.80336419E-04 -0.80597205E-04
57 0.9000 -0.16264439E-03 -0.16380789E-03 -0.16493960E-03 -0.80698390E-04 -0.80912909E-04 -0.81131979E-04
58 0.9062 -0.16371873E-03 -0.16487895E-03 -0.16605724F-03 -0.81285647E-04 -0.81488509E-04 -0.81695893E-04
59 0.9125 -0.16473688E-03 -0.16591480E-03 -0.16711066E-03 -0.81786008E-04 -0.82062202E-04 -0.82342879E-04
60 0.9187 -0.16569748E-03 -0.16693483E-03 -0.16180999E-03 -0.82115756E-04 -0.82632650E-04 -0.83153994E-04
61 0.9250 -0.16663840E-03 -0.16800074E-03 -0.16938076E-03 -0.82180347E-04 -0.83198652E-04 -0.84221373E-04
62 0.9312 -0.167(7194E-03 -0.16923904E-03 -0.17052372E-03 -0.81 826606E-04 -0.83760244E-04 -0.85598272E-04
63 0.9375 -0.16902138E-03 -0.17085266E-03 -0.17270145E-03 -0.81445068E-04 -0.84320541E-04 -0.87200390E-04
64 0.9437 -0.17103694E-03 -0.17309692E-03 -0.17517442E-03 -0.81131266E-04 -0.84888320E-04 -0.88649755E-04
65 0.9500 -0.17414726E-03 -0.17618186E-03 -0.17823413E-03 -0.81882263E-04 -0.85480629E-04 -0.89083402E-04
66 0.9562 -0.17868247E-03 -0.18005618E-03 -0.18144771E-03 -0.85248069E-04 -0.86123643E-04 -0.97003670E-04
67 0.9625 -0.18449451E-03 -0.1840q011E-03 -0.18360373E-03 -0.93366335E-04 -0.86848702E-04 -0.80335571E-04
68 0.9687 -0.19032622E-03 -0.18632895E-03 -0.1823*968E-03 -0.10839836E-03 -0.87678991E-04 -0.66964118E-04
69 0.9750 -0.19297563E-03 -0.18350527E-03 -0.17405236E-03 -0.13109664E-03 -0.88601844E-04 -0.46111406E-04
70 0.9812 -0.18650636E-03 -0.17039808E-03 -0.15430561E-03 -0.15816261E-03 -0.89523772E-04 -0.20888883E-04
71 0.9875 -0.16209376E-03 -0.14089664E-03 -0.1171200E-03 -0. 17834257E-03 -0.90212221E-04 -0.20849964E-05
72 0.9937 -0.10954704E-03 -0.90595940E-04 -0.71t,51922E-04 -0.16795364E-03 -0.90241753E-04 -0.12529630E-04
73 1.0000 -0.38831540E-04 -0.21998229E-04 -0.51669174E-05 -0.15532616E-03 -0.87996916E-04 -0.20667669E-04

WAW ?A 59-22 C,7
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(~~' PROD 3

1 7

INPUT

6PkINbj CUjNb

U. O.U 04 U. U.VUL U4 UTAU Vs, TAU 1, TAU ~ .U. O.YOL 04

1.UUOQL-U2 ±0. obit0

NAM ?fi 59-22



114PUT TkMP kuk LO(.ATII~ho 1.

1.UO0uiL-42 I*iuo 1. 00UUU.-O2 ±.C0Outt- 2 1.OIb-V .UUE-Oi 1.UUOJ L.OOL o Ot0 1.0000E-02 1.OOOOE-Oi
1e4J0OUE-02 1.Uuguk-uoe ouUvt-02 100otu-ug 1.00OUwL-0i 1.Oot-02 I.MoO-od i.OOgOe-uk A.uoQok-O2
1.uUOE-VJ2 1.'UuuJv.-u2 loUtjvtL-2 1.OUuLu-u , I.LuuOt-U2 1.UUUOL-i2 1.Gu~oo-09 ioOOOUt-ok i.00otO&O

I.UOU~E-V2 1.utuuLk-u2 1.0U1U-W) 1.OU~ut-Ue I.Uouuc-ud I.(JUUcE-J2 .d U i.OO000 .utO-U 1.UUuooi-02

I.UUOUE-u2 1.I"OQUE-02 I.MOUL-2 1.JUku-od i.UUOGE-Od I.QUUL-O, i.OUUOE-Od 1.0000E-02 1.OOOOL-Oe
1.tJOUE-U2 1.QUUUE-OZ IOUUUEI-02 1.u(~out-J'd 1.uou-Uld I.UU4)(k-Ud 1.000oL-Od i.OOOOE-OZ 1.00OOk-od
1.uUO~uk-02 1.UUUUE-U2 I#UOUOE-O2 1.O4.OUL-U2 1.00UUL-O2 1.vuUUL-Od 1.00OOL-02 1.OOO0E-02 1.0000E-02
1.0UOE-02 1.O(JUOE-02 1.0UOE-u2 1.OOOOL-02 I.OUOOI-Cli I.UOOOL-ug 1.0000~E-02 I.OOOOLO02 1*0OOE-U~

f .UOOUE-O2 1.('uolk-02 1.OOUi.J-02 1.O(jOuu-u2 1.UOUOi:-02 1.UU'JUL-02 i.UVUOL-Ue i.UOU,-Oi i.000GEiO2
I:QUOUE-:JZ 1.(AOUE-U2 1.UIJE-02 1.UQUUL-U2 1.OUUEU-ui I:UOL~U-U2 i.uu~Ucut- 1.JOOUL-Oi i.UUUE:Oi
IUOUL-U uz I. UOQE U2 1 OOuUE-U2 I.UUUUL-ud .ouoUt-JL I.UUUOL-u2 utu2 IUUtcUe I.UU#U ~.ou(c.o0
1.IjUOUE-0j2 1000UL~U-02 I.Uuuu-02 k.UUUWE-Ud 1.uOUUE-v 1.uu)OOE-04 i.Ouuc-u4 I.Uuuo-U4 I.UUOUL-Od
1.UUO'JE-u2 1.UiUUoE-u2 1.OUUUE-O2 1.UUUUc.-Oi 1.UUOEk-u2 1.0uo bg- 1.OuuoOLu~ i.oIJOtcud i.uJootkoe
1.4jUOVL.J2 1.tUO(UE-U2 1.OUUUL-U2 1.UU(UL-IJ2 I.U(Jout-U2 I.UUtUL-Ui 1.OOOOLU04 i.OUUL-ud I.~)Ju.uut
I' .UUO~k-V2 1.UOUQu-U2 I.uuuut-u2 I.UUUUL-ve L.UUUUL-U2 1.IuuuuLJLJ I.OOUOL-Le I.OUUUUL-U i.uv~uutOd
1.UOOOJL-02 I.V.UUQL-02 I.uouot-oz i.00uOc.-ud I.UOUUL-ue I.Jouut-u I.OOIUUU i.Juuu-Ud I.UUUQQ.od
I.UOOUJE-u2 l.UOE-Ui I.UOUOE-02 I.0wuUL-., 1IJUUL-Ul L.UUOUL-U4 i.OOOOL-UC i.uouO -U L.OUO(,-td
I.UO'JE-U2 1.O(UiJb-UZ 1.uoutui-U 1.uUjUEt- ' .UUUC(u I.UOUOL-U 1.00oO d 1.0000,-U, 1.0uoUUU-Ce

1.OIEU .UOU)E-02 1.OOUof-02 1.OUUoo-u2 I.UUOt-U2 I.V.ujoc-ud I.ou~oOrZ i.0out-od I.UOOOC-Oz

1.UOUJ-U'2 1.UU&-O2 1.00)U01-02 1.OUUOLou2 1.uOOL-u I.U)UOUL-Ld 1.OOOot-0e i.OUOU.-. I.UoOLo:
l.UOOJE-U2 1.UuoOE-02 1.Ouvoe-O2 1.O.JOL-UZ A.UOOL-J I.uuu~UL-Ud I.OOOOr.-Oe I.OVOUL-UJd !.OOOOL-02

1.Vuout-u2 1.IUVOVE-02 I.OOut-02 1.U4UOL-V2 .Oouot-U2 l.JJUL-U2 I.UtOOO2 1.0OOGE-ul 1.jvau
1.uJ~oowt-.j 1.O(UOE-02 i.vuota-O2

MWA T 59-22 Z



OUTPUTS 1AthbI.t AT LOCATION 1. TIt4Cs 0.IPUS y wv
1 0*1U'JO -0.132b9444L-UO -.e .ba~jU
2 0.1062 -O.i3bV.44L-O4 -Qdb41.t0
3 0.11~b -0*14U0b~bt.-t4 -VdV44tLV
4 0.1187 -0.i5056b1IE-0i -J.d8J0lbVbE-Q4

6 0.1312 -0.15Q2914bL-Ue -u.af0:)Ilbdt6.-U
7 0.J.375 -O.ibU5bi~b-04 -U.0643Z04YL-04
8 0.1437 -U.1.,U0bl4*E-Uz -wo.8,8Ubo~L-0z
9 0.1500 -0.10264bVL-Ud -U.d5Ibibbk.-O

1I O4i6i -u.U1bt*oi-oe -U.a301443E-Od

14 0.1812 -0.1 U~bb1tE-04 -Q.d 026 1L-Oi

13 0.170 -0.1t t04L-We -u.I2ebleI L-Uc
10 0.1812 -0.1 U26120L-04 -U.0 20d-04

26 0.18/:' -O.1t3UaU6IL-U4 -U.Cl1d41Ze-oe
27 0.37 -0.1502bo12E-02 -U.d0b1Vi0t-0
28 0.320UQ -QUebbul1bE-0e -ku.do~bio..1L-Q4
29 0.430" -U.o.lz 18,Ev-U2 -u.oqt:ib22O-04
30 0.21450. O12 Ulbb O L-U 9 -Q.1003boi~t-O2
le30 O.,d0IdU -0.1 42bV~ L-U4 -0.18,01/'00b3L-O4

33 0.4300~ -0.,2uev1L-Q4, 001V DU.1 r-04

22 0.4U00 -0.A2U021-Ue U~koo~(

31 0.,44.1 -0. 1 ,U2I, jjL-uz -u.4101LO

39 0.,0U0 -U.i2UdI32ot-02 -6). OIOU4I L-04
40 0.b273 -0. ltUd 1061-Ud -0j.iIbdb04-02e
41 0.bbUV -01 jb -o U.0., 'd4t-04

48 0.32!) -0.l O213ojL-Ud. -u.o2,1~Ioj,.-02

3V1 0.3750 -0.1 Q27elOL-Ue -V.601'V~bt-Ud

48 0.5.2W0 -0.lDU42Us81L-U(h -,1.4/bliolL-U&

37 0.t5( -U.41101-22



(juTPUTS eilt)bILt At LuLAIIQN 1. 11 1"L. 0.

Pus y w v

51 0=45 :0:42ve;t gvt 44
5k 0 bat 0 1209 vioz:Ve -6 I$ju , U4 a-44
2$ 0*672U -U*A2VXb4v4C-V4 -V*i4QfQUjtC-Vt
b4 fjobfie -0. A )uAcolut-vd -v*,Lgu2jvs m-ue
!)$ 04061:, 1 IL-ug -w*Al44Gw,9lt-u4

bb ooovsl -uA!ov4 14 ojt-U4 -vjv*Q3ujjt-U,

:) I V:VVVO :0:42W4 ,llt:w, -U:jOJljj* ,t-U4

ba 0 ywot u l2viblivt ue

D9 OfVl4b -V. A266 i0l4r.-Ug
bu U*V141 -6.930249iUt-Uo

*I O-VdZu -Ul-vvizaaL-v4 -- iQliA 4bL-UZ

061 i -U-AZ'VV4UJJt-QZ
O:V315 :0:4:)V44U44t:,o4 -V:D440ii4mt:Q

:4 0 V4.0 0 A514d,2$VL q& - jaV44.4tt U-
65 O.VbOO -0,151LI91.4t-09 -'-;'jlVO(40t-Wa

66 O.V:)Qg
67 394101 )
66 0.*6d/

09 O*V 1:00 -Q, A:Oloo54; L-Qc -W.z1044AGit-U.)
IV NVOli

71 O*V#ib -V.14.2&JiZk4t-Uj
72 0*'-JQ3'j -O.o!) lv5,j;j4c-Q.4 -w.144*14LO -04
73 j.UvVO ol



UUTWTS Ml!)bILL Al LU(.ATIUN 1. liLmL U.

3o y.1 -U.4eM b-1 Iv - i41b-1 -04 - U Ai t~j~ a I .4loZeooU1 )1 . 110 A6d4 9

4 O.iuiu -0. ewtA Ai14t-U I-W Y.jYo4VI-u.4 0t. # 4 -tL- 144UUL~.) Ij-U U.tLvO'lI-'
d 0.1062 -OL1145Lv -U. 1,0001 I-U. -U.0-10UbO~t-U4 -U-.iQ 3,:)L-U

4  
-01f4lLU U.3 iluoV~-U4
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Base Edge Moment Base Edge Shear Spring
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(Base Clamping Attachment)
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Displacement Spring (Central Boom in Flexure) Distributed, Spring
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0
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(Radial Growth at Nose) (Central Boom in Tension)

FIG. 2 - SPRING RESTRAINT SCHEME FOR BOUNDARY CONDITIONS

VAd) PD , -?' 836



Figure 3. Spacing of Mesh Points Along the Generator
of the Cone for n 24.
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LIST OF SYMBOLS

p pressure

I Young's modulus of face material

a thermal expansion coefficient of face material

v Poisson's ratio of face material

c c Young's modulus of core material

c thermal expansion coefficient of core material

vc  Poisson's ratio of core material

T ij  stress tensor

'lij strain tensor

i displacement vector (tensor quantity)

aij, a metric tensor (covariant, contravariant)

ui  physical displacements

Crij  physical stresses

hc  core thickness

h outer face thickness

h+ inner face thickness

AT temperature relative to a datum level

J volume element or Jacobian

J value of J at y 3 : 0 (= surface area element on shell
mid- surface)

F free energy

W virtual work
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yI y2 y3 curvilinear shell coordinates, yl = circumferential,
y2 = meridional, y3 = normal, -inward

a alternate symbol for yl = longitude angle

ijk indices ranging over 1,2, 3

LAfY6 indices ranging over 1, 2

( ) (no subscript) perta4ning to face material

( )c pertaining to core material

( )+ pertaining to (inner/outer) face shell

m( )  pertaining to ruth Fourier coefficient
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1. INTRODUCTION AND PRESENTATION OF SANDWICH SHELL

ASSUMPTIONS

Following is an extension of the analysis of homogeneous shells described

in Part A of Chapter IV to shells of sandwich type construction. The geometry

considered is that of Figure 1; i. e., a shell of revolution with core material

of thickness hc and with an outer face-shell of thickness h. and an inner

face-shell of thickness h+. The coordinate system yl y2 y 3 is the same as

that used in the homogeneous shell analysis.

In accordance with the accepted practice for shell theory and for

sandwich construction, the following assumptions are made. First, in the

face plates

T93 = small of high order (1)

71 S= small of high order . (2)

In the core, infinite rigidity is assumed in the normal direction

i.e., %3 = 0 (3)

and T3 =small of high order. (4)

Zero rigidity is assumed in the tangential directions;

i.e., T 11 =Tis =TU 0 (5)

and the only core stresses of importance are TL, Q L, 2.

4.7) T( 59-121 850



In accordance with the usual assumptions of sandwich theory, the face

shells are assumed to be thin in comparison with the core and, therefore,

tall terms depending on the cube of the face thicknesses, h+3 or h3, are

neglected.
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2. FORMULATION OF THERMOELASTIC PROBLEMS BY MEANS

A OF FREE ENERGY

Assumptions (1) and (2) for the face shells imply that the same shell

stress-strain law applies to the face-shells as to homogeneous shells. For

the tangential stresses, this law is as follows:

ciL3

=--aEa +a -AT. (6)

-,p = 1, 7.

This is simply Duhamel's thermal stress-strain law generalized to curvi-

33
linear coordinates and then specialized to incorporate the vanishing of T

In the core, we must revert to the more general relation giving TiJ and then

specialize to T1 3 since these shear stresses are the only core stresses of

importance in the analysis.

_ C (a )
(7)

where use has been made of the geometric relations derived in the homo-

geneous shell theory section of Part A of this chapter:

a33 = a33 = L (8)

a = a,= 0 L =I, 2. (9)

Now the thermoelastic problem for sandwich shells, as for the case of

homogeneous shells, is formulated through the use of the so-called free

energy, F.
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This free energy may be defined in general as

F! J}= dy' dy2 dy 3 TiJ 1 - AT aiJ 1 (10)(T ij L - 2Vi

In the present context, no consideration need be given to the physical nature

of this quantity. Rather, F may be thought of as the integral, the vanishing

of whose first variation with respect to displacements leads to the proper

equilibrium equations and natural boundary conditions for the thermoelastic

problem. Now from the assumed vanishing of T 33 it follows from the

general thermal stress-strain law that

0 =-- + - [a T ct+ 13 a AT(1
+V6(73 -.. V ]3) Z V

This may be solved for i33 to give:

L_-v va (L+v)
13 "(v) + T"1 o P I aATt-Z.v aI 5  L-2v

(12)

or

q,3 l-v a 3 L-' "
.... -a. . tin + i I I AT

/K5v8
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Substituting this into the integrand of (10) and eliminating the contribution

of T3 , the integrand of the free energy, F, becomes:

:+ iJ t CAT 0i 'i , 3r ia
ij" L-2v' o, Z OT 1 0 + T a 1Q

(13)

a~ [L T nap - V a P li p + ..!2 LcA~ l
l-Zv " JJi -11

The term involving (AT? makes no contribution to the variation operation

and, hence, is dropped. The remainder of the right-hand side of (13) reduces

to:

T QP+J + T 3  
.- . .... a P ' (14)

CL P Q3 -v

Thus, the free energy expression, subject only to the restriction that T 3 = 0,

is given by:

I O cP 3 i QAT
F J dyIdyZ dy via P- +I _ [ a Pq (15)

Now the contribution of the two face-shells to F is clear. Recognizing

the insignificance of T0 3 in the face-shells, this contribution becomes:

Fface shels= F(+) F(-) ce .hff L' dy vod t P 1 a L" 4  P

Ffc shel' + ~~ + %+ aO-, i

4 ace shells' vo ume
.... .sheits (16)
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P_ . For the core, the term TA t'%Lrops out of the integrand of (15) due to

the assumed insignificance of core in-plane stresses T a p However, it is

.necessary to evaluate the core in-plane strains ?I which enter the thermal

term in (15). This is done as folows: First, since T33 is assumed

insignificant in the core, the thermal stress-strain law for the core in-plane

stresses is the same as for the face shells (6) but with core properties 4c , Vc

replacing e, Y. Thus, the vanishing of T in the core implies:

0 = cc aL6 a AY + .!.. a. 0. a 6 C ciaL'3AT (17)
L+v% L-Yc 6 L- vc

We require, for F, the expression for a ap,,. This is found by multiplying

(17) through by a a , contracting on c and recalling that the metric tensors

are symmetric and that the contravariant and covariant forms of the metric

tensors are inverses of each other; i. e.,

apa'3 = 6 0 (18)

'33

Performing this multiplication and contraction we find (noting that 6 = 2

since we are effectively in 2-space when summing over Greek indices)

2 aLc AT L ( 6Y + c a6' n L a C'3 (19)

I-V c  -F+Vc  L-v c  Y6 = L-Yc  n . ()

%A Th 59- ;' 855



Thus, we have the required expression aQ t 0 for the core.

Now this together with (7) is introduced into expression (15) to get the

core contribution to F.

Lc 2'(acAT)

Fcore = Sore dy' dy z dy 3  +  aO 3$ 3 " I-)

Fcore C C 3dyldyzdy3(V a
(effective) a/i)core

(20)

where the (acAT? term is dropped since it makes no contribution in the

process of forming a first variation with respect to the displacements.

The final effective expression for free energy F is thus given by:

F =Fface shells + Fcore (21)

or

JdyIdy dy 3  (- a - + aL Pa6

Z(l+v) L- aTIYce shells'volume

E c L A T a CL CL
L-v

(22)

+ Jdy' dy- a 3 f_

Sore ( [ ,j+ aV C  33)
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Assuming face shell strains, temperatures, and metric elements to be

replaceable by their mean values (at the face shell mid-surfaces) and using

() notation to denote inner and outer face shells, respectively, this becomes:

Sh

F = J d y l  d y z d y ' a P 1 1 0 3 )

y - 1 ,

+ h +)J()dyldyz/ 'E ao a(+ ay6]1+ (+v N +)I- V ( +) I y6(+)

a(L"T(+) L

I - V.(+_

+ 3 dy' d9(/!! ,2 6a py + Za(1 ,
H ( )+ t - 11k '1 (-)

e-C EAT( C (23)

L"" - a(_) cL P

If the face shell thicknesses h(+), h(_) vary along the meridian, it is merely

necessary to keep these quantities inside their respective integrals.

Thus, in the core, integration through the core thickness (with respect

to y 3) is required while in the face shells, mean values (values at the face-

shell mid-surfaces) are used. More will be said subsequently about the

meaning of the face-shell mean temperatures A T(+) and A1.) which are

called for in the free energy.
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The possible presence of external pressure p(y y2 ) requires the

formulation of a work term W as follows:

W dy' dyZ J(yI,y') p(ylyZ) u3 (y', yZ) . (24)

The variational formulation of the problem of sandwich shell response

to both mechanical (pressure) and thermal loads is then simply the following:

6 (F - W) = 0 (25)

where the variation is performed with respect to displacements and where

p(y , y2) is constant with respect to the variation operation.
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3. DISPLACEMENT AND STRAIN EXPRESSIONS, AND REDUCTION TO

A TWO-SPACE PROBLEM

In accordance with usual shell theoretical assumptions, it is presumed

that the tangential physical displacements are approximable by first-order

polynomials in y 3 and the normal displacement is independent of y 3 .

u- U, (yyz) + y, , (yy)

(26)
u 3 u 3 (Y",~

(0)

The relation between tensor and physical displacements is:

u Vai = a (27)

no sum on i

where 4i is the contravariant form of the displacement vector . Thus,

u Fa

no sum on a
(28)

U3 3

The strain-displacement expression within the assumption of linear

elasticity is

L~ (29)
ij 2 j(4i ,i + 4 j ,1

commas denoting covariant derivatives. Following from (28) and (29),
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together with the orthogonality of the curvilinear coordinate system and the

independence of metric elements aij on yl* it can be shown that:

8ul u -a u3 Ball111= - + - Va2  al-

By, 2 89z B- 2 By

TIz uz +u 3 a azz
'izz = a- z - + 8a

L auz  u r a a . L Oul

By 1  4 89 2 a, Y

S a u' + L 8u3  u IT

1 3 -T 11 ay-- 2 B y1  4 aB9

71_3 L Buz I O u3 uZ Ti aa2, (30)

2 ~ B2 ,

Substituting into (30) from (26) the strains are expressed in terms of U(b)

and Ull)

(8,u3 + u %' + all ,,,2  3 2 + Ba,

y By' z ayz ,,o) ( 2 9

fiZZ = \.,azz /().y  + =G)+ U(01 a)sy

a8 8u.v,, a ._ Ba,, (u ,: ,;<' I + "+- 3 +j 1o-1 ~u

,\ ,,y, 8y,)'J /,y N  B"

.......()=-LBa?- U +)y 3 Uy
1 2 By B y 4 By' (o) (1)

L 1 2 I -- 8a
' ,= z a', , ) 0 U(y, - y + Y3 , .Il

'(I) 2By 2  4 -y 3 (o ) (31)
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These expressions for strain now permit the evaluation of tij+ and

11 ij .H in an obvious manner. As in the expressions for geometrical

quantities a(+), aiJ , etc., it is merely necessary to substitute for y 3 the
(+'(-)

values 2+ and - in the respective integrands of F(+) and

F(_).

Now the metric tensor elements ai and ai j are known functions of

yl, y2, y 3 as is the Jacobian J. Thus, integration with respect to y 3 through

the core thickness is possible in the core contribution to F. The core con-

tribution may be integrated with respect to y 3 either analytically or by

quadratures, whichever is more convenient in the numerical program. The

result, in either case, is a formulation (25) in which now both F and W are

2-space integrals (over yl and y2 ).

It is important to note that, unlike the homogeneous shell analysis, the

sandwich shell theory places no restriction on the shear strains ncL in the

core material. Thus, the displacement slopes u(,) cannot be evaluated

a priori in terms of the uo but must be found as a result of the overall
( o)

calculation. This implies that five functions u, uo)  U 3  are
0 (1)' (o)

being sought in the sandwich problem, whereas only three were required in

the homogeneous shell problem. Hence, variations must be performed with

respect to all five of these functions in the present case. Furthermore, it

should be noted that AT appears only in the face-shell contributions to F,

so that it is unnecessary to introduce the T (O) T(1) T ( a)  integral

expressions which appeared in the homogeneous shell analysis.
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4. REDUCTION TO A SET OF ONE-DIMENSIONAL PROBLEMS BY

FOURIER ANALYSIS.

As in the homogeneous shell problem, the sandwich shell problem is

transformed by Fourier analysis from a two-space problem to a set of

one-dimensional problems for the Fourier coefficients of the displacements,

strains, and stresses. This Fourier analysis proceeds in a manner similar

to that used in the homogeneous shell problem. It is assumed first that QAT

and p may be decomposed into Fourier cosine series in yl (or, equivalently,

in 0). If aAT and p are symmetric about different 9-values, then we need

merely superimpose the stresses, strains, and displacements of two separate

responses with the proper angular displacement, since the present analysis

is a linear one. With this in mind, we express aAT and p in the form:

o
cLAT= mT cos m 0

0(3Z)
P MmP cos m e

Corresponding to these forms in the forcing phenomena, the appropriate

forms for displacements and strains are:

(0) s(o) u 1 ) N m()sn

U() m(o) C~ (l) m U1

o 0COG

(0) z m(o) m6

0 (33)
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111 Y j 1 1 cos e

0

11zz : cos me

0

12= q nj 1 2 sin m e

13 n In sin rn eL

1123 : M7z23 cosme . (34)

Analogous expressions apply for the corresponding stres a components, i. e.,

T'1  is a cosine series, etc.

The detailed expressions for the strain components are as follows:

a" oa1  () 2 3  m ±a

zn1 z=~i iUo OmU 8 ) -Uao

Sfa,," )m- + y' -u r(o) y(,

-
4 n1gyz f [~ 8 +u'o ( . nuUo)~ ... JLY ( ai(3

.r.i i. - 2  3M 2 )+93

2 8 a2 2 8

TL 7 Va1 1 Balla1  ~
22 rn;o) 40 89 n(

in11(M 1)32  By B~___ f~ a 2 (u y 4~ (35

inU(z) _ M - (o8a ()
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As may be seen by inspection of the free energy expression (23) and

the work integral (24), the harmonics all decouple and it suffices to consider

each Fourier component separately. The m = 0 component corresponds to

axisymmetric loading; m = 1, to the simplest case of asymmetric loading,

and so on. The linearity of the analysis then permits superposition of the

Fourier components with the appropriate con m 0 or sin m 0 multipliers to

give total displacements, strains, or stresses as required.
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5. NUMERICAL ANALYSIS

The sandwich shell response to thermal and/or mechanical loading is

to be solved starting from the formulation (25) together with expressions (23)

and (24) for F and W, respectively. As noted earlier, the core contribution

to F is integrated numerically or analytically. This leaves the expression

F-W in the form of a two-space integral with integrand involving the known

geometry (aij, etc.) and the five unknown functions of yl and y2

(0), u( ) , Uo) . Resolution into Fourier components then reduces the

(F-W) integral to a set of one-dimensional integrals over y2 , the meridional

variable, and reduces the entire analysis to a set of uncoupled problems.

6 (m F - mW ) = 0 (36)

for the functions ( a u)a u 3mU(0)' 1Mu(1) 1 m (0))

This may be handled by any one of a number of techniques: (a) A direct

variational method may be used in which each of the unknown displacement

functions is expanded in a series of boundary-condition satisfying functions

and the variation is formed with respect to the coefficients of these functions.

(b) Alternatively, the direct variational method may be applied with respect

to the point values of the displacements and displacement slopes at a set of

mesh points along the shell meridian. (This corresponds to the method which

has been programmed for homogeneous shells.) (c) Another possibility is

to form the required variation analytically, thereby deriving the differential

equations and natural boundary conditions of the problem. These could then
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be solved numerically. Inasmuch as this corresponds closely to the direct

variational method (b) and method (b) insures the positive definite nature of

the matrix for the difference equations, method (b) is preferred. Furthermore,

method (b) eliminates the necessity for deriving the Euler equations analytical-

ly and, at the sar ie time, automatically introduces natural boundary conditions

at free or simply supported edges in proper finite-difference form. Under

this method, the required integrals are evaluated by quadratures in terms of

the mesh-point values of the unknown functions. The result leads directly to

the matrix and the forcing vector for the numerical determination of these

point values. The matrix algebra problem is then solved for these point

values, and strains and stresses are calculated from them using finite

difference approximations to the required derivatives.

'dAM TR 59-22 866



6. NUMERICAL DETERMINATION OF TEMPERATURES AT+ and AT.

The required mean temperature increments AT+ and AT in the inner

and outer face shells may be determined by a quasi-one-dimensional

numerical analysis. A suitable technique may be described as follows:

-Consider the one-dimensional composite slab as shown in the sketch. The

face and core thicknesses are those of the sandwich shell

insulated

' xz x3 x4 x5 x 6

o/X

Outer Gore Inner
Face Face

Shell Shell
(-) (+)

Let the heat flux into the outer face at some point (yl y2 ) be denoted by Q and

assume an insulated inner face. It is required to calculate the mean tempera-

ture in each of the face sheets. This may be done by calculating the tempera-

tures at the mesh points shown at a set of equal time increments At and then

defining

= .T =T T + Tv rfeec

A 1 vAt) AT' N N-1 - T
2 (37)

v TV+ To T
A41 )(v~t) AT- 1___ _0 - Treference
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where Tm T (xm # vAt).m

The heat flux Q depends on time, on (yl yA), and on the outer wall

temperature To . itself. The quasi-one-dimensional analysis must, therefore,

be performed at a number of space points (y1 y2 ) depending upon the nature of

the physical problem. If only axisymretric conditions are of interest in a

particular application, then no yl-dependence of Q occurs. The reason that

Fourier analysis is not suggested for the heat problem lies in the essentially

non-linear character of the outer wall boundary conditions; i. e., radiation

is frequently important, and this involves ( and convective heat

transfer also involves TI in a non-linear manner. Thus, the functions

AT+ and AT- must be calculated first as functions of (yl, y2 , t ) and then

the quantities aAT+ , LA&T_ may be Fourier analyzed giving Fourier

components which depend on y2 and time. The thermal stress analysis is

then carried out at a number of fixed values of time.

A mesh is chosen for the core, and the heat equation for the composite

material is written in difference form. These difference equations may be

put in explicit difference form with a strict upper limit on permissible time

step At for stability. Alternatively, they may be written in implicit form

with no stability limitation on At . The implicit form requires solution of

(N + 1) simultaneous equations, but the tri-diagonal nature of the associated

matrix permits rapid and efficient solution. A more serious problem which

arises in connection with the implicit scheme is the necessity to iterate in

order to express heat flux Q at the latest time. This is not a major drawback,
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however, and much numerical experience has been accumulated in this respect.

The large gain to be realized in time-step size At recommends the use of the

implicit scheme. The difference equations for the heat problem are well-

known and need not be reproduced herein.
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Figure 1.. Geometry of Sandwich Shell
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